Обучение сети арт.
В начале функционирования все веса B и T нейронов, а также параметр сходства получают начальные значения. Согласно теории АРТ, эти значения должны удовлетворять условию
где m - число компонент входного вектора X, значение L>1 (например L=2). Такой выбор весов будет приводить к устойчивому обучению. Уровень сходства выбирается на основе требований решаемой задачи. При высоких значениях этого параметра будет сформировано большое число категорий, к каждой из которых будут относиться только очень похожие вектора. При низком уровнесеть сформирует небольшое число категорий с высокой степенью обобщения.
Процесс обучения происходит без учителя, на основе самоорганизации. Обучение производится для весов нейрона-победителя в случае как успешной, так и неуспеншной классификации. При этом веса вектора B стремятся к нормализованной величине компонент вектора C:
При этом роль нормализации компонент крайне важна. Вектора с большим число единиц приводят к небольшим значениям весов b, и наоборот. Таким образом, произведение
оказывается масштабированным. Масштабирование приводит к тому, что возможно правильное различение векторов, даже если один является подмножеством другого. Пусть нейрон X1 соответствует образу (100000), а нейрон X2 - образу (111100). Эти образы являются, очевидно, различными. При обучении без нормализации (т.е. bici) при поступлении в сеть первого образа, он даст одинаковые скалярные произведения, равные 1, как с весами нейрона X1, так и X2. Нейрон X2, в присутствии небольших шумовых отклонений в значениях весов, может выиграть конкуренцию. При этом веса его вектора T устаноятся равными (100000), и образ (111100) будет безвозвратно "забыт" сетью.
При применении нормализации исходные скалярные произведения будут равны единице для нейрона X1, и значению 2/5 для нейрона X2 (при L=2). Тем самым, нейрон X1 заслуженно и легко выиграет конкурентное соревнование.
Компоненты вектора T, как уже говорилось, при обучении устанавливаются равными соответвующим значениям вектора C. Следует подчеркнуть, что это процесс необратим. Если какая-то из компонент tjоказалась равной нулю, то при дальнейшем обучении на фазах сравнения соотвествующая компонента cjникогда не получит подкрепления от tj=0 по правилу 2/3, и, следовательно, единичное значение tjне может быть восстановлено. Обучение, таким образом, сопровождается занулением все большего числа компонент вектора T, оставшиеся ненулевыми компоненты определяют множество критических черт данной категории. Эта особенность проиллюстрирована на Рис. 11.3.
Рис. 11.3. Обучающие образы C и сформированный вектор критических черт T - минимальный набор общих элементов категории.
В оригинальной работе обучение рассматривается в терминах дифференциальных уравне-ний, из которых указанные нами значения получаются в виде предельных.
Остановимся теперь кратко на основных теоремах теории АРТ, характеризующих обучение и функционирование сети. Некоторые из них нами уже упоминались в тексте.
- Лекция 3. Биологический нейрон и его кибернетическая модель.
- Метод нейробиологии.
- Биологический нейрон.
- Нейронные сети.
- Биологическая изменчивость и обучение нейронных сетей.
- Формальный нейрон.
- Обучение нейрона детектированию границы "черное-белое"
- Лекция 4. Персептрон Розенблатта.
- Персептрон Розенблатта.
- Теорема об обучении персептрона.
- Линейная разделимость и персептронная представляемость
- Лекция 5. Свойства процессов обучения в нейронных сетях.
- Задача обучения нейронной сети на примерах.
- Классификация и категоризация.
- Обучение нейронной сети с учителем, как задача многофакторной оптимизации. Понятие о задаче оптимизации.
- Постановка задачи оптимизации при обучении нейронной сети
- Лекция 6. Многослойный персептрон.
- Необходимость иерархической организации нейросетевых архитектур.
- Многослойный персептрон.
- Обучение методом обратного распространения ошибок.
- Лекция 7. Другие иерархические архитектуры.
- Звезды Гроссберга
- Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- Карта самоорганизации Кохонена.
- Нейронная сеть встречного распространения.
- Лекция 8. Модель Хопфилда.
- Сети с обратными связями
- Нейродинамика в модели Хопфилда
- Правило обучения Хебба
- Ассоциативность памяти и задача распознавания образов
- Лекция 9. Обобщения и применения модели Хопфилда.
- Модификации правила Хебба.
- Матрица Хебба с ортогонализацией образов.
- Отказ от симметрии синапсов.
- Алгоритмы разобучения (забывания).
- Двунаправленная ассоциативная память.
- Детерминированная и вероятностная нейродинамика.
- Применения сети Хопфилда к задачам комбинаторной оптимизации.
- Лекция 10. Неокогнитрон Фукушимы.
- Когнитрон: самоорганизующаяся многослойная нейросеть.
- Неокогнитрон и инвариантное распознавание образов.
- Лекция 11. Теория адаптивного резонанса.
- Дилемма стабильности-пластичности восприятия.
- Принцип адаптивного резонанса.
- Нейронная сеть aрt-1.
- Начальное состояние сети.
- Фаза сравнения.
- Фаза поиска.
- Обучение сети арт.
- Теоремы арт.
- Дальнейшее развитие арт: архитектуры арт-2 и арт-3. Нерешенные проблемы и недостатки арт-1.
- Сети арт-2 и арт-3.
- Лекция 12. Черты современных архитектур.
- Черты современных архитектур.
- Сегодняшний день нейронауки.
- Программное и аппаратное обеспечение. Нейро-эвм.