Сети арт-2 и арт-3.
Основной отличительной чертой нейронной сети АРТ-2 является возможность работы с аналоговыми векторами и сигналами. По сравнению с АРТ-1 в архитектуре сети сделаны некоторые изменения, позволяющие отдельным подсистемам функционировать асинхронно, что принципиально для аппаратных реализаций.
Важным отличием аналоговых сигналов от битовых является принципиальная возможность аналоговых векторов быть сколь угодно близкими друг к другу (в то время как простанство битовых векторов дискретно). Это накладывает дополнительные требования на функционирование нейронов слоя сравнения - требуется более тонкий и чувствительный механизм для выделения областей резонанса. Общим решением здесь является переход к многослойной архитектуре, с все более точной настройкой при переходе от слоя к слою, что и применено в АРТ-2. Функционирование слоя распознавания принципиально не изменяется.
Сети АРТ-2 применялись для распознавания движущихся изображений. Успешные эксперименты выполнены в Массачусетском Технологическом Институте (MIT). Поскольку нейросистемы АРТ не содержат механизма инвариантного распознавания (в отличие от НЕОКОГНИТРОНА, см. предыдущую Лекцию), то в сочетании с ними применяются специализированные (часто не нейросетевые) системы инвариантного представления образов, например двумерное преобразование Фурье, или более сложные алгоритмы. Более подробное рассмотрение особенностей и применений АРТ-2 требует профессионального изучения и не входит в наши цели.
Следующим шагом в развитии АРТ явилась сеть АРТ-3. Особенности обучения нейронов сетей АРТ-1 и АРТ-2 не позволяют использовать эти сети, как элементы более крупных иерархических нейросистем, в частности, компоновать из них многослойные сети. Это затрудняет представление в АРТ иерархически организованной информации, что характерно для систем восприятия человека и животных.
Эти проблемы решены в сети АРТ-3, которая выступает как многослойная архитектура. При переходе от слоя к слою происходит контрастирование входных образов и запоминание их в виде все более общих категорий. При этом основной задачей каждого отдельного слоя является сжатие входящей информации.
Образ входит в адаптирующийся резонанс между некоторой парой слоев, в дальнейшем этот резонанс рапространяется на следующие слои иерархии. В АРТ-1 и АРТ-2 недостаточный уровень резонанса приводил к генерации сигнала сброса, что приводило к полному торможению слоя распознавания. В случае многослойной сети АРТ-3 это недопустимо, так как это разрывает поток информации. Поэтому в АРТ-3 введен специальный механизм зависимости активности синапсов обратных связей от времени, аналогичный рефрактерному торможению биологического нейрона после передачи возбуждения. Поэтому вместо полного сброса сигнала происходит торможение синаптических сигналов обратной связи, и слой сравнения получает исходное состояние возбуждения для выполнения фазы поиска нового резонанса.
Интересным предложением является также использование в многослойной иерархии слоев, которые не являются слоями АРТ, а принадлежат некоторой другой архитектуре. В этом случае система получается гибридной, что может привести к возникновению новых полезных свойств.
Развитие теории АРТ продолжается. По высказыванию авторов теории, АРТ представляет собой нечто существенно более конкретное, чем философское построение, но намного менее конкретное, чем законченная программа для компьютера. Однако уже в современном виде, опираясь на свою более чем 20-летнюю историю, сети АРТ демонстрируют свои успешные применения в различных областях. АРТ сделала также важный шаг в общей проблеме моделирования пластично-стабильного восприятия.
- Лекция 3. Биологический нейрон и его кибернетическая модель.
- Метод нейробиологии.
- Биологический нейрон.
- Нейронные сети.
- Биологическая изменчивость и обучение нейронных сетей.
- Формальный нейрон.
- Обучение нейрона детектированию границы "черное-белое"
- Лекция 4. Персептрон Розенблатта.
- Персептрон Розенблатта.
- Теорема об обучении персептрона.
- Линейная разделимость и персептронная представляемость
- Лекция 5. Свойства процессов обучения в нейронных сетях.
- Задача обучения нейронной сети на примерах.
- Классификация и категоризация.
- Обучение нейронной сети с учителем, как задача многофакторной оптимизации. Понятие о задаче оптимизации.
- Постановка задачи оптимизации при обучении нейронной сети
- Лекция 6. Многослойный персептрон.
- Необходимость иерархической организации нейросетевых архитектур.
- Многослойный персептрон.
- Обучение методом обратного распространения ошибок.
- Лекция 7. Другие иерархические архитектуры.
- Звезды Гроссберга
- Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- Карта самоорганизации Кохонена.
- Нейронная сеть встречного распространения.
- Лекция 8. Модель Хопфилда.
- Сети с обратными связями
- Нейродинамика в модели Хопфилда
- Правило обучения Хебба
- Ассоциативность памяти и задача распознавания образов
- Лекция 9. Обобщения и применения модели Хопфилда.
- Модификации правила Хебба.
- Матрица Хебба с ортогонализацией образов.
- Отказ от симметрии синапсов.
- Алгоритмы разобучения (забывания).
- Двунаправленная ассоциативная память.
- Детерминированная и вероятностная нейродинамика.
- Применения сети Хопфилда к задачам комбинаторной оптимизации.
- Лекция 10. Неокогнитрон Фукушимы.
- Когнитрон: самоорганизующаяся многослойная нейросеть.
- Неокогнитрон и инвариантное распознавание образов.
- Лекция 11. Теория адаптивного резонанса.
- Дилемма стабильности-пластичности восприятия.
- Принцип адаптивного резонанса.
- Нейронная сеть aрt-1.
- Начальное состояние сети.
- Фаза сравнения.
- Фаза поиска.
- Обучение сети арт.
- Теоремы арт.
- Дальнейшее развитие арт: архитектуры арт-2 и арт-3. Нерешенные проблемы и недостатки арт-1.
- Сети арт-2 и арт-3.
- Лекция 12. Черты современных архитектур.
- Черты современных архитектур.
- Сегодняшний день нейронауки.
- Программное и аппаратное обеспечение. Нейро-эвм.