Принцип адаптивного резонанса.
Привлекательной особенностью нейронных сетей с адаптивным резонансом является то, что они сохраняют пластичность при запоминании новых образов, и, в то же время, предотвращают модификацию старой памяти. Нейросеть имеет внутренний детектор новизны - тест на сравнение пред'явленного образа с содержимым памяти. При удачном поиске в памяти пред'явленный образ классифицируется с одновременной уточняющей модификацией синаптических весов нейрона, выполнившего классификацию. О такой ситуации говорят, как о возникновении адаптивного резонанса в сети в ответ на пред'явление образа. Если резонанс не возникает в пределах некоторого заданного порогового уровня, то успешным считается тест новизны, и образ воспринимается сетью, как новый. Модификация весов нейронов, не испытавших резонанса, при этом не производится.
Важным понятием в теории адаптивного резонанса является так называемый шаблон критических черт(critical feature pattern) информации. Этот термин показывает, что не все черты (детали), представленные в некотором образе, являются существенными для системы восприятия. Результат распознавания определяется присутствием специфичных критических особенностей в образе. Рассмотрим это на примере.
Рис. 11.1. Иллюстрация к понятию критических черт образа.
Обе пары картинок на Рис. 11.1 имеют общее свойство: в каждой из пар черная точка в правом нижнем углу заменена на белую, а белая точка левом нижнем углу - на черную. Такое изменение для нижней пары картинок (на рисунке - пара (b)), очевидно, является не более чем шумом, и оба образа (b) являются искаженными версиями одного и того же изображения. Тем самым, измененные точки не являются для этого образа критическими.
Совершенно иная ситуация имеет место для верхней пары картинок (a). Здесь такое же изменение точек оказывается слишком существенным для образа, так что правая и левая картинки являются различными образами. Следовательно, одна и та же черта образа может быть не существенной в одном случае, и критической в другом. Задачей нейронной сети будет формирование правильной реакции в обоих случаях: "пластичное" решение о появлении нового образа для пары (a) и "стабильное" решение о совпадении картинок (b). При этом выделение критической части информации должно получаться автоматически в процессе работы и обучения сети, на основе ее индивидуального опыта.
Отметим, что в общем случае одного лишь перечисления черт (даже если его предварительно выполнит человек, предполагая определенные условия дальнейшей работы сети) может оказаться недостаточно для успешного функционирования искусственной нейронной системы, критическими могут оказаться специфические связи между несколькими отдельными чертами.
Вторым значительным выводом теории выступает необходимость самоадатации алгоритма поиска образов в памяти. Нейронная сеть работает в постоянно изменяющихся условиях, так что предопределенная схема поиска, отвечающая некоторой структуре информации, может в дальнейшем оказаться неэффективной при изменении этой структуры. В теории адаптивного резонанса это достигается введением специализированной ориентирующей системы, которая самосогласованно прекращает дальнейший поиск резонанса в памяти, и принимает решение о новизне информации. Ориентирующая система также обучается в процессе работы.
В случае наличия резонанса теория АРТ предполагает возможность прямого доступа к образу памяти, откликнувшемуся на резонанс. В этом случает шаблон критических черт выступает ключем-прототипом для прямого доступа.
Эти и другие особенности теории адаптивного резонанса нашли свое отражение в нейросетевых архитектурах, которые получили такое же название - АРТ.
- Лекция 3. Биологический нейрон и его кибернетическая модель.
- Метод нейробиологии.
- Биологический нейрон.
- Нейронные сети.
- Биологическая изменчивость и обучение нейронных сетей.
- Формальный нейрон.
- Обучение нейрона детектированию границы "черное-белое"
- Лекция 4. Персептрон Розенблатта.
- Персептрон Розенблатта.
- Теорема об обучении персептрона.
- Линейная разделимость и персептронная представляемость
- Лекция 5. Свойства процессов обучения в нейронных сетях.
- Задача обучения нейронной сети на примерах.
- Классификация и категоризация.
- Обучение нейронной сети с учителем, как задача многофакторной оптимизации. Понятие о задаче оптимизации.
- Постановка задачи оптимизации при обучении нейронной сети
- Лекция 6. Многослойный персептрон.
- Необходимость иерархической организации нейросетевых архитектур.
- Многослойный персептрон.
- Обучение методом обратного распространения ошибок.
- Лекция 7. Другие иерархические архитектуры.
- Звезды Гроссберга
- Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- Карта самоорганизации Кохонена.
- Нейронная сеть встречного распространения.
- Лекция 8. Модель Хопфилда.
- Сети с обратными связями
- Нейродинамика в модели Хопфилда
- Правило обучения Хебба
- Ассоциативность памяти и задача распознавания образов
- Лекция 9. Обобщения и применения модели Хопфилда.
- Модификации правила Хебба.
- Матрица Хебба с ортогонализацией образов.
- Отказ от симметрии синапсов.
- Алгоритмы разобучения (забывания).
- Двунаправленная ассоциативная память.
- Детерминированная и вероятностная нейродинамика.
- Применения сети Хопфилда к задачам комбинаторной оптимизации.
- Лекция 10. Неокогнитрон Фукушимы.
- Когнитрон: самоорганизующаяся многослойная нейросеть.
- Неокогнитрон и инвариантное распознавание образов.
- Лекция 11. Теория адаптивного резонанса.
- Дилемма стабильности-пластичности восприятия.
- Принцип адаптивного резонанса.
- Нейронная сеть aрt-1.
- Начальное состояние сети.
- Фаза сравнения.
- Фаза поиска.
- Обучение сети арт.
- Теоремы арт.
- Дальнейшее развитие арт: архитектуры арт-2 и арт-3. Нерешенные проблемы и недостатки арт-1.
- Сети арт-2 и арт-3.
- Лекция 12. Черты современных архитектур.
- Черты современных архитектур.
- Сегодняшний день нейронауки.
- Программное и аппаратное обеспечение. Нейро-эвм.