Дальнейшее развитие арт: архитектуры арт-2 и арт-3. Нерешенные проблемы и недостатки арт-1.
Нейронные сети АРТ, при всех их замечательных свойствах, имеют ряд недостатков. Одним из них является большое количество синаптических связей в сети, в расчете на единицу запоминаемой информации. При этом многие из весов этих связей (например, веткора T) оказываются после обучения нулевыми. Эту особенность следует учитывать при аппаратных реализациях.
Сеть АРТ-1 приспособлена к работе только с битовыми векторами. Это неудобство преодолевается в сетях АРТ-2 и АРТ-3. Однако в этих архитектурах, равно как и в АРТ-1, сохраняется главный недостаток АРТ - локализованность памяти. Память нейросети АРТ не является распределенной, некоторой заданной категории отвечает вполне конкретный нейрон слоя распознавания. При его разрушении теряется память обо всей категории. Эта особенность, увы, не позволяет говорить о сетях адаптивной резонансной теории, как о прямых моделях биологических нейронных сетей. Память последних является распределенной.
- Лекция 3. Биологический нейрон и его кибернетическая модель.
- Метод нейробиологии.
- Биологический нейрон.
- Нейронные сети.
- Биологическая изменчивость и обучение нейронных сетей.
- Формальный нейрон.
- Обучение нейрона детектированию границы "черное-белое"
- Лекция 4. Персептрон Розенблатта.
- Персептрон Розенблатта.
- Теорема об обучении персептрона.
- Линейная разделимость и персептронная представляемость
- Лекция 5. Свойства процессов обучения в нейронных сетях.
- Задача обучения нейронной сети на примерах.
- Классификация и категоризация.
- Обучение нейронной сети с учителем, как задача многофакторной оптимизации. Понятие о задаче оптимизации.
- Постановка задачи оптимизации при обучении нейронной сети
- Лекция 6. Многослойный персептрон.
- Необходимость иерархической организации нейросетевых архитектур.
- Многослойный персептрон.
- Обучение методом обратного распространения ошибок.
- Лекция 7. Другие иерархические архитектуры.
- Звезды Гроссберга
- Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- Карта самоорганизации Кохонена.
- Нейронная сеть встречного распространения.
- Лекция 8. Модель Хопфилда.
- Сети с обратными связями
- Нейродинамика в модели Хопфилда
- Правило обучения Хебба
- Ассоциативность памяти и задача распознавания образов
- Лекция 9. Обобщения и применения модели Хопфилда.
- Модификации правила Хебба.
- Матрица Хебба с ортогонализацией образов.
- Отказ от симметрии синапсов.
- Алгоритмы разобучения (забывания).
- Двунаправленная ассоциативная память.
- Детерминированная и вероятностная нейродинамика.
- Применения сети Хопфилда к задачам комбинаторной оптимизации.
- Лекция 10. Неокогнитрон Фукушимы.
- Когнитрон: самоорганизующаяся многослойная нейросеть.
- Неокогнитрон и инвариантное распознавание образов.
- Лекция 11. Теория адаптивного резонанса.
- Дилемма стабильности-пластичности восприятия.
- Принцип адаптивного резонанса.
- Нейронная сеть aрt-1.
- Начальное состояние сети.
- Фаза сравнения.
- Фаза поиска.
- Обучение сети арт.
- Теоремы арт.
- Дальнейшее развитие арт: архитектуры арт-2 и арт-3. Нерешенные проблемы и недостатки арт-1.
- Сети арт-2 и арт-3.
- Лекция 12. Черты современных архитектур.
- Черты современных архитектур.
- Сегодняшний день нейронауки.
- Программное и аппаратное обеспечение. Нейро-эвм.