44.Метод штучного базису
Існує випадок, коли система обмежень задачі лінійного програмування містила одиничну матрицю порядку m. Проте більшість задач не можна звести до потрібного вигляду. В такому разі застосовується метод штучного базису.
Розглянемо задачу лінійного програмування:
(1)
(2) (3)
Задача подана в канонічному вигляді і система обмежень (2) не містить одиничної матриці. Отримати одиничну матрицю можна, якщо до кожного рівняння в системі обмежень задачі додати одну змінну . Такі змінні називають штучними. (Не обов’язково кількість введених штучних змінних має дорівнювати m. Їх необхідно вводити лише в ті рівняння системи обмежень, які не розв’язані відносно базисних змінних.) Допустимо, що система рівнянь (2) не містить жодного одиничного вектора, тоді штучну змінну вводять у кожне рівняння:
(4)
У результаті додавання змінних у рівняння системи (2) область допустимих розв’язків задачі розширилась. Задачу з системою обмежень (4) називають розширеною, або М-задачею. Розв’язок розширеної задачі збігатиметься з розв’язком початкової лише за умови, що всі введені штучні змінні в оптимальному плані задачі будуть виведені з базису, тобто дорівнюватимуть нулеві. Тоді система обмежень (4) набуде вигляду (2) (не міститиме штучних змінних), а розв’язок розширеної задачі буде розв’язком і задачі 1-3
Згідно з симплексним методом до базису вводять змінні, які покращують значення цільової функції. Для даної задачі на максимум вони мають його збільшувати. Отже, для того, щоб у результаті процедур симплексних перетворень виключалися з базису штучні змінні, потрібно ввести їх у цільову функцію з від’ємними коефіцієнтами. Тобто цільова функція набуде вигляду:
(У разі розв’язання задачі на відшукання мінімального значення цільової функції вводять коефіцієнти, які є досить великими числами. Цільова функція тоді має вигляд: ).
Припускається, що величина М є досить великим числом. Тоді якого б малого значення не набувала відповідна коефіцієнту штучна змінна , значення цільової функції буде від’ємним для задачі на максимум та додатним для задачі на мінімум і водночас значним за модулем. Тому процедура симплексного методу одразу вилучає відповідні змінні з базису і забезпечує знаходження плану, в якому всі штучні змінні .
Якщо в оптимальному плані розширеної задачі існує хоча б одне значення , то це означає, що початкова задача не має розв’язку, тобто система обмежень несумісна.
Для розв’язання розширеної задачі за допомогою симплексних таблиць зручно використовувати таблиці, оцінкові рядки яких поділені на дві частини-рядки. Тоді в (m+2)-му рядку записують коефіцієнти з М, а в (m+1)-му — ті, які не містять М. Вектор, який підлягає включенню до базису, визначають за (m+2)-м рядком. Ітераційний процес по (m+2)-му рядку проводять до повного виключення всіх штучних змінних з базису, потім процес визначення оптимального плану продовжують за (m+1)-им рядком.
Взаємозв’язок між розв’язками початкової та розширеної задач лінійного програмування не є очевидним і визначається такою теоремою.
Теорема Якщо в оптимальному плані розширеної задачі штучні змінні , то план є оптимальним планом початкової задачі.
№ 45 Нелінійні оптимізаційні моделі. Загальний запис математичної моделі. Функція Лагранжа
Нехай для деякої виробничої системи необхідно визначити план випуску продукції за умови найкращого способу використання її ресурсів. Відомі загальні запаси кожного ресурсу, норми витрат кожного ресурсу на одиницю продукції та ціни реалізації одиниці виготовленої продукції. Критерії оптимальності можуть бути різними, наприклад, максимізація виручки від реалізації продукції. Така умова подається лінійною залежністю загальної виручки від обсягів проданого товару та цін на одиницю продукції.
Однак, загальновідомим є факт, що за умов ринкової конкуренції питання реалізації продукції є досить складним. Обсяг збуту продукції визначається передусім її ціною, отже, як цільову функцію доцільно брати максимізацію не всієї виготовленої, а лише реалізованої продукції. Необхідно визначати також і оптимальний рівень ціни на одиницю продукції, за якої обсяг збуту був би максимальним. Для цього її потрібно ввести в задачу як невідому величину, а обмеження задачі мають враховувати зв’язки між ціною, рекламою та обсягами збуту продукції. Цільова функція в такому разі буде виражена добутком двох невідомих величин: оптимальної ціни одиниці продукції на оптимальний обсяг відповідного виду продукції, тобто буде нелінійною. Отже, маємо задачу нелінійного програмування.
Також добре відома транспортна задача стає нелінійною, якщо вартість перевезення одиниці товару залежить від загального обсягу перевезеного за маршрутом товару. Тобто коефіцієнти при невідомих у цільовій функції, що в лінійній моделі були сталими величинами, залежатимуть від значень невідомих (отже, самі стають невідомими), що знову приводить до нелінійності у функціоналі.
І нарешті, будь-яка задача стає нелінійною, якщо в математичній моделі необхідно враховувати умови невизначеності та ризик. Як показник ризику часто використовують дисперсію, тому для врахування обмеженості ризику потрібно вводити нелінійну функцію в систему обмежень, а мінімізація ризику певного процесу досягається дослідженням математичної моделі з нелінійною цільовою функцією.
Загальна задача математичного програмування формулюється так: знайти такі значення змінних xj , щоб цільова функція набувала екстремального (максимального чи мінімального) значення:
(8.1)
за умов:
( ); (8.2)
. (8.3)
Якщо всі функції та , є лінійними, то це задача лінійного програмування, інакше (якщо хоча б одна з функцій є нелінійною) маємо задачу нелінійного програмування.
Функція Лагранжа
Ідея методу множників Лагранжа полягає в заміні початкової задачі простішою. Для цього цільову функцію замінюють іншою, з більшою кількістю змінних, тобто такою, яка включає в себе умови, що подані як обмеження. Після такого перетворення дальше розв’язування задачі полягає в знаходженні екстремуму нової функції, на змінні якої не накладено ніяких обмежень.
Розглянемо метод множників Лагранжа для розв’язування задачі нелінійного програмування, що має вигляд:
(8.6)
за умов:
, (8.7)
де функції і мають бути диференційовними.
Задача (8.6), (8.7) полягає в знаходженні екстремуму функції за умов виконання обмежень .
Переходимо до задачі пошуку безумовного екстремуму. В літературі [13, 28] теоретично доведено, що постановки та розв’язання таких задач еквівалентні.
Замінюємо цільову функцію (8.6) на складнішу. Ця функція називається функцією Лагранжа і має такий вигляд:
де — деякі невідомі величини, що називаються множниками Лагранжа.
№ 46 Теорія двоїстості в лінійних оптимізаційних задачах. Математична модель прямої та двоїстої задач. Загальний запис моделей.
Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею.
Економічну інтерпретацію кожної з пари таких задач розглянемо на прикладі виробничої задачі (§ 2.1).
Пряма задача: max F = c1x1 + c2x2 + … + cnxn (3.1)
за умов: (3.2)
. (3.3)
Необхідно визначити, яку кількість продукції кожного j-го виду необхідно виготовляти в процесі виробництва, щоб максимізувати загальну виручку від реалізації продукції підприємства. Причому відомі: наявні обсяги ресурсів — ; норми витрат і-го виду ресурсу на виробництво одиниці j-го виду продукції — , а також — ціни реалізації одиниці j-ої продукції.
Розглянемо тепер цю саму задачу з іншого погляду. Допустимо, що за певних умов доцільно продавати деяку частину чи всі наявні ресурси. Необхідно визначити ціни ресурсів. Кожному ресурсу поставимо у відповідність його оцінку . Умовно вважатимемо, що — ціна одиниці і-го ресурсу.
На виготовлення одиниці j-го виду продукції витрачається згідно з моделлю (3.1)—(3.3) m видів ресурсів у кількості відповідно . Оскільки ціна одиниці і-го виду ресурсу дорівнює , то загальна вартість ресурсів, що витрачаються на виробництво одиниці j-го виду продукції, обчислюється у такий спосіб:
.
Продавати ресурси доцільно лише за умови, що виручка, отримана від продажу ресурсів, перевищує суму, яку можна було б отримати від реалізації продукції, виготовленої з тих самих обсягів ресурсів, тобто:
.
Зрозуміло, що покупці ресурсів прагнуть здійснити операцію якнайдешевше, отже, необхідно визначити мінімальні ціни одиниць кожного виду ресурсів, за яких їх продаж є доцільнішим, ніж виготовлення продукції. Загальну вартість ресурсів можна виразити формулою:
.
Отже, в результаті маємо двоїсту задачу:
(3.4)
за умов: (3.5)
(3.6)
Задача (3.4)—(3.6) є двоїстою або спряженою до задачі (3.1)—(3.3), яку називають прямою (основною, початковою). Поняття двоїстості є взаємним. По суті мова йде про одну і ту ж задачу, але з різних поглядів. Дійсно, не важко переконатися, що двоїста задача до (3.4)—(3.6) збігається з початковою. Тому кожну з них можна вважати прямою, а іншу — двоїстою.
- 1.Економіко-математична модель. Класифікація моделей
- 2. Геометрична інтерпретація роз’язку цілочислових задач лінійного програмування.
- 4. Математичний інструмент, який використовується для побудови економіко-математ. Моделей.
- 6. Формула Тейлора. Матриця Гессе, її структура, та її використання для дослідження функцій на екстремум.
- 7. Системи нерівностей. Область допустимих розв’зків системи нерівностей.
- 8. Ознаки множинних розв’язків системи нерівностей, кутові точки.
- 9. Суть ідеї методу відтинання для задач цілочислового програмування.
- 10. Додатньо та від’ємно визначена матриця Гессе. Використання цих ознак матриці для дослідження функції на екстремум.
- 11. Загальний запис лінійної оптимізаційної моделі. Цільова функція та система обмежень.
- 12. Описати алгоритм розв’язання цілочислових задач лінійного програмування за методом Гоморі.
- 13. Метод приведеного градієнта (метод Якобі).
- 14. Допустимий план розв’язку задач лінійного програмування, опорний та оптимальний плани.
- 16. Матриця Якобі, матриця управління.
- 17. Векторно-математична форма запису задачі лінійного програмування.
- 18. Геометрична інтерпретація розвязку задач лінійного програмування на площині.
- 19. Градієнт функції
- 20. Основні властивості розв’язків задач лінійного програмування.
- 21. Геометрична інтерпретація лінійних оптимізаційних моделей на площині.
- 22. Описати алгоритм методу Гоморі розвязку задач цілочислового математичного програмування.
- 23. Симплексний метод розвязування задач лінійного програмування. Ідея методу.
- 24. Розвязування дробово-лінійної оптимізаційної задачі зведенням до задачі лінійного програмування.
- 25. Градієнтний метод. Ідея методу.
- 29. Окантована матриця Гессе, та її використання при розв'язку нелінійних задач.
- 30. Структура симплексної таблиці. Базисні та вільні вектори. Оцінковий рядок симплексної таблиці.
- 31. Приведення задачі дробово-лінійного програмування до оптимізаційної задачі лінійного програмування.
- 34. Цілочислові оптимізаційні моделі. Класифікація моделей цілочислової оптимізації.
- 35. Метод множників Лагранжа. Поняття абсолютного та умовного екстремуму функції.
- 36. Симплексний метод. Вибір напрямного стовпчика і рядка при здійсненні ітерації.
- 37. Загальний запис нелінійної оптимізаційної моделі.
- 39. Метод штучного базису. Суть базису.
- 40. Окантована матриця Гессе та її побудова.
- 43. Метод множників Лагранжа
- 44.Метод штучного базису
- 47.Нелінійні моделі. Визначення стац. Точок при викор. Методу множників Лагранжа
- 48.Правила побудови двоїстих задач
- 52. .Приведення дробово-лінійної оп-ної задачі до задачі лінійного програмування.
- 53. Сиплекс табл. Для задачі лінійного програм з штучним базисом
- 54. В яких випадках викор дроб-лін цільова ф-ція при розв’язуванні екон задач
- 56.Записати загальний запис моделі та записати економічний зміст коефіцієнтів моделі.
- 57.Описати алгоритм розвязання задач лінійного програмування симплексним методом.
- 58.Загальна структура симплексної таблиці при реалізації симплексного методу для задачі цілочислового програмування.
- 59.Градієнтний метод.Основна властівість градієнта.Ідея методу.
- 60. Загальний запис лінійної оптимізаційної задачі.Приведення моделі до канонічного вигляду.Описати економічний зміст кофіцієнтів.
- 60. Загальний запис лінійної оптимізаційної моделі. Приведення моделі до канонічного вигляду.Описати економічний зміст коефіцієнтів bj,cj,aij
- 61. Графічний метод розв’язання цілочислових задач лінійного програмування.
- 62. Визначення мін(макс) для цільової функції
- 64 Записати математичну модель оцінки рентабельності виготовленої продукції
- 65. Аналіз коефіцієнтів цільової функції cj, dj.
- 67. Пряма та двоїста задачі лінійного програмування. Визначення Lmin для двоїстої задачі по результатам симплексної таблиці прямої задачі.
- 68 Базисні та вільні вектори,базисні та вільні невідомі. Як визначити число базисних векторів по заданій матриці ∆
- 69. Загальний запис математичної моделі дробово-лінійної задачі приведення її до задачі лінійного програмування.
- 71.Чому дорівнюють .
- 72.Задачу в лінійному програмуванні в загальному вигляді привести до канонічного вигляду.Базисні і вільні зміні.Економічна інтерпретація коефіцієнтів моделі а,с,b.
- 73.Математичне програмування. Обєкт матем програмування. Визначення матем моделі.
- 75.Записати економіко-матем модель в загальному вигляді.
- 76.Окантована матриця Гесе. Достатні умови для ідентифікації екстремальних точок.
- 77. Базисні та вільні вектори. Визначення базисних векторів по заданій матриці ∆.
- 78. Визначення вільних векторів через базисні.
- 79. Що описує система обмежень задачі лінійного програмування Загальний запис економіко-математичної моделі.
- 80. Симплексний метод розв’язування задач лінійного програмування. Використання методу Жордана-Гаусса для визначення елементів аij симплексної таблиці.
- 81. Структура окантованої матриці н. Визначення матриць р, Рт, q. Використання матриці н для дослідження стаціонарних точок.
- 82. Економіко-математична модель. Правила, які потрібно дотримуватись при побудові такої моделі. Поняття адекватності економіко-математичної моделі.
- 83. Симлексна таблиця для задачі лінійного прорамування. Оцінючий та оцінючий стовпчик
- Структура симплексної таблиці для розв’язку задач лінійного програмування
- 84. Метод відтинання. Метод Гоморі. Як отримати нерівність правильного відтинання
- 85. Записати загальний запис математичного програмування. Лінійні та нелінійні моделі.
- 86. Cтруктура матриць а та Ат
- 87.Дробово- лінійне програмування. Система обмежень. Яку інформацію містять
- 88. Градієнтний метод Франка-Вульфа
- 89. Метод приведеного градієнта(метод Якобі).
- 90 Загальні форми запису лінійних оптимізаційних задач
- 91. Цілочислове програмування. В яких випадках воно використовується. Геометричний розв’язок цілочислових задач на пощині.
- 92.Дати визначення допустимого плану. Область існування планів,оптимальний план
- 93. Цілочислове програмування. Визначення оптимального плану для цілочислової моделі графічним методом на площині.
- 1.Економіко-математична модель. Класифікація моделей.
- 2. Геометрична інтерпретація роз’язку цілочислових задач лінійного програмування.
- 3. Глобальний та умовний екстремуми цільової функції. Необхідна умова існування екстремуму.
- 214 Феф ми найкращі Дякую всім, хто приймав участь