18. Геометрична інтерпретація розвязку задач лінійного програмування на площині.
Розглянемо на площині х1Оx2 сумісну систему лінійних нерівностей:
(2.9)
Кожна нерівність цієї системи геометрично визначає півплощину з граничною прямою ai1x1 + ai2x2 = bi (i = 1, 2, ...,т). Умови невід’ємності змінних визначають півплощини з граничними прямими х1 = 0 та х2 = 0. Система сумісна, тому півплощини як опуклі множини, перетинаючись, утворюють спільну частину, що є опуклою множиною і являє собою сукупність точок, координати кожної з яких є розв’язком даної системи (рис. 2.1).
Сукупність цих точок (розв’язків) називають багатокутником розв’язків, або областю допустимих планів (розв’язків) задачі лінйного програмування. Це може бути точка (єдиний розв’язок), відрізок, промінь, багатокутник, необмежена багатокутна область.
Якщо в системі обмежень (2.9) буде три змінних, то кожна нерівність геометрично визначатиме півпростір тривимірного простору, граничними площинами котрого будуть ai1x1 + ai2x2 + ai3x3 = bi (i = 1, 2, ...,т), а умови невід’ємності — півпростори з граничними площинами хj = 0 (j = 1, 2, 3), де і — номер обмеження, а j — номер змінної. Якщо система обмежень сумісна, то ці півпростори як опуклі множини, перетинаючись, утворять у тривимірному просторі спільну частину, що називається багатогранником розв’язків. Він може бути точкою, відрізком, променем, багатокутником, багатогранником, багатогранною необмеженою областю.
Нехай у системі обмежень (2.9) кількість змінних більша, ніж три: х1, х2,… хn; тоді кожна нерівність визначає півпростір n-вимірного простору з граничною гіперплощиною аi1x1 + ai2x2 + ai3x3 + … +ainxn = bi (i = 1, 2, ...,т). Кожному обмеженню виду (2.9) відповідають гіперплощина та напівпростір, який лежить з одного боку цієї гіперплощини, а умови невід’ємності — півпростори з граничними гіперплощинами хj = 0 (j = 1, 2, 3, ..., n).
Якщо система обмежень сумісна, то за аналогією з тривимірним простором вона утворює спільну частину в n-вимірному просторі — опуклий багатогранник допустимих розв’язків.
Отже, геометрично задача лінійного програмування являє собою відшукання координат такої точки багатогранника розв’язків, при підстановці яких у цільову лінійну функцію остання набирає максимального (мінімального) значення, причому допустимими розв’язками є усі точки багатогранника розв’язків.
Цільову функцію
в п-вимірному просторі основних змінних можна геометрично інтерпретувати як сім’ю паралельних гіперплощин, положення кожної з яких визначається значенням параметра Z.
- 1.Економіко-математична модель. Класифікація моделей
- 2. Геометрична інтерпретація роз’язку цілочислових задач лінійного програмування.
- 4. Математичний інструмент, який використовується для побудови економіко-математ. Моделей.
- 6. Формула Тейлора. Матриця Гессе, її структура, та її використання для дослідження функцій на екстремум.
- 7. Системи нерівностей. Область допустимих розв’зків системи нерівностей.
- 8. Ознаки множинних розв’язків системи нерівностей, кутові точки.
- 9. Суть ідеї методу відтинання для задач цілочислового програмування.
- 10. Додатньо та від’ємно визначена матриця Гессе. Використання цих ознак матриці для дослідження функції на екстремум.
- 11. Загальний запис лінійної оптимізаційної моделі. Цільова функція та система обмежень.
- 12. Описати алгоритм розв’язання цілочислових задач лінійного програмування за методом Гоморі.
- 13. Метод приведеного градієнта (метод Якобі).
- 14. Допустимий план розв’язку задач лінійного програмування, опорний та оптимальний плани.
- 16. Матриця Якобі, матриця управління.
- 17. Векторно-математична форма запису задачі лінійного програмування.
- 18. Геометрична інтерпретація розвязку задач лінійного програмування на площині.
- 19. Градієнт функції
- 20. Основні властивості розв’язків задач лінійного програмування.
- 21. Геометрична інтерпретація лінійних оптимізаційних моделей на площині.
- 22. Описати алгоритм методу Гоморі розвязку задач цілочислового математичного програмування.
- 23. Симплексний метод розвязування задач лінійного програмування. Ідея методу.
- 24. Розвязування дробово-лінійної оптимізаційної задачі зведенням до задачі лінійного програмування.
- 25. Градієнтний метод. Ідея методу.
- 29. Окантована матриця Гессе, та її використання при розв'язку нелінійних задач.
- 30. Структура симплексної таблиці. Базисні та вільні вектори. Оцінковий рядок симплексної таблиці.
- 31. Приведення задачі дробово-лінійного програмування до оптимізаційної задачі лінійного програмування.
- 34. Цілочислові оптимізаційні моделі. Класифікація моделей цілочислової оптимізації.
- 35. Метод множників Лагранжа. Поняття абсолютного та умовного екстремуму функції.
- 36. Симплексний метод. Вибір напрямного стовпчика і рядка при здійсненні ітерації.
- 37. Загальний запис нелінійної оптимізаційної моделі.
- 39. Метод штучного базису. Суть базису.
- 40. Окантована матриця Гессе та її побудова.
- 43. Метод множників Лагранжа
- 44.Метод штучного базису
- 47.Нелінійні моделі. Визначення стац. Точок при викор. Методу множників Лагранжа
- 48.Правила побудови двоїстих задач
- 52. .Приведення дробово-лінійної оп-ної задачі до задачі лінійного програмування.
- 53. Сиплекс табл. Для задачі лінійного програм з штучним базисом
- 54. В яких випадках викор дроб-лін цільова ф-ція при розв’язуванні екон задач
- 56.Записати загальний запис моделі та записати економічний зміст коефіцієнтів моделі.
- 57.Описати алгоритм розвязання задач лінійного програмування симплексним методом.
- 58.Загальна структура симплексної таблиці при реалізації симплексного методу для задачі цілочислового програмування.
- 59.Градієнтний метод.Основна властівість градієнта.Ідея методу.
- 60. Загальний запис лінійної оптимізаційної задачі.Приведення моделі до канонічного вигляду.Описати економічний зміст кофіцієнтів.
- 60. Загальний запис лінійної оптимізаційної моделі. Приведення моделі до канонічного вигляду.Описати економічний зміст коефіцієнтів bj,cj,aij
- 61. Графічний метод розв’язання цілочислових задач лінійного програмування.
- 62. Визначення мін(макс) для цільової функції
- 64 Записати математичну модель оцінки рентабельності виготовленої продукції
- 65. Аналіз коефіцієнтів цільової функції cj, dj.
- 67. Пряма та двоїста задачі лінійного програмування. Визначення Lmin для двоїстої задачі по результатам симплексної таблиці прямої задачі.
- 68 Базисні та вільні вектори,базисні та вільні невідомі. Як визначити число базисних векторів по заданій матриці ∆
- 69. Загальний запис математичної моделі дробово-лінійної задачі приведення її до задачі лінійного програмування.
- 71.Чому дорівнюють .
- 72.Задачу в лінійному програмуванні в загальному вигляді привести до канонічного вигляду.Базисні і вільні зміні.Економічна інтерпретація коефіцієнтів моделі а,с,b.
- 73.Математичне програмування. Обєкт матем програмування. Визначення матем моделі.
- 75.Записати економіко-матем модель в загальному вигляді.
- 76.Окантована матриця Гесе. Достатні умови для ідентифікації екстремальних точок.
- 77. Базисні та вільні вектори. Визначення базисних векторів по заданій матриці ∆.
- 78. Визначення вільних векторів через базисні.
- 79. Що описує система обмежень задачі лінійного програмування Загальний запис економіко-математичної моделі.
- 80. Симплексний метод розв’язування задач лінійного програмування. Використання методу Жордана-Гаусса для визначення елементів аij симплексної таблиці.
- 81. Структура окантованої матриці н. Визначення матриць р, Рт, q. Використання матриці н для дослідження стаціонарних точок.
- 82. Економіко-математична модель. Правила, які потрібно дотримуватись при побудові такої моделі. Поняття адекватності економіко-математичної моделі.
- 83. Симлексна таблиця для задачі лінійного прорамування. Оцінючий та оцінючий стовпчик
- Структура симплексної таблиці для розв’язку задач лінійного програмування
- 84. Метод відтинання. Метод Гоморі. Як отримати нерівність правильного відтинання
- 85. Записати загальний запис математичного програмування. Лінійні та нелінійні моделі.
- 86. Cтруктура матриць а та Ат
- 87.Дробово- лінійне програмування. Система обмежень. Яку інформацію містять
- 88. Градієнтний метод Франка-Вульфа
- 89. Метод приведеного градієнта(метод Якобі).
- 90 Загальні форми запису лінійних оптимізаційних задач
- 91. Цілочислове програмування. В яких випадках воно використовується. Геометричний розв’язок цілочислових задач на пощині.
- 92.Дати визначення допустимого плану. Область існування планів,оптимальний план
- 93. Цілочислове програмування. Визначення оптимального плану для цілочислової моделі графічним методом на площині.
- 1.Економіко-математична модель. Класифікація моделей.
- 2. Геометрична інтерпретація роз’язку цілочислових задач лінійного програмування.
- 3. Глобальний та умовний екстремуми цільової функції. Необхідна умова існування екстремуму.
- 214 Феф ми найкращі Дякую всім, хто приймав участь