31. Приведення задачі дробово-лінійного програмування до оптимізаційної задачі лінійного програмування.
Позначимо
і введемо заміну змінних . Тоді цільова функція матиме вигляд:
.
Отримали цільову функцію, що виражена лінійною залежністю.
Оскільки , то звідси маємо: . Підставимо виражені через нові змінні значення в систему обмежень (7.2):
Крім того, з початкової умови
.
Умова (7.3) стосовно невід’ємності змінних набуває вигляду:
.
Виконані перетворення приводять до такої моделі задачі:
Отримали звичайну задачу лінійного програмування, яку можна розв’язувати симплексним методом.
Допустимо, що оптимальний розв’язок останньої задачі існує і позначається:
.
Оптимальні значення початкової задачі (7.1)—(7.3) визначають за формулою: .
32. Як отримати приведений градієнт?
Градієнтні методи належать до наближених методів розв’язування задач нелінійного програмування і дають лише певне наближення до екстремуму, причому за збільшення обсягу обчислень можна досягти результату з наперед заданою точністю, але в цьому разі є можливість знаходити лише локальні екстремуми цільової функції.
В основі градієнтних методів лежить основна властивість градієнта диференційовної функції — визначати напрям найшвидшого зростання цієї функції. Ідея методу полягає у переході від однієї точки до іншої в напрямку градієнта з деяким наперед заданим кроком.
Розглянемо метод Франка — Вульфа, процедура якого передбачає визначення оптимального плану задачі шляхом перебору розв’язків, які є допустимими планами задачі.
Нехай необхідно відшукати
за лінійних обмежень:
;
Допустимо, що Х0 — початкова точка, що належить множині допустимих планів даної задачі. В деякому околі цієї точки нелінійну цільову функцію замінюють лінійною і потім розв’язують задачу лінійного програмування. Нехай розв’язок лінійної задачі дав значення цільової функції F0, тоді з точки Х0 в напрямку F0 необхідно рухатись доти, поки не припиниться зростання цільової функції
Розглянемо детальніше перехід від k-ої ітерації методу до (k + 1)-ої ітерації.
Припустимо, що відома точка Xk, яка належить області допустимих розв’язків. У даній точці обчислюємо градієнт цільової функції:
.
Значення градієнта функції задає в даній точці напрям найшвидшого її зростання.
Замінюємо цільову функцію задачі лінійною функцією виду:
.
Потім розв’язуємо задачу лінійного програмування з обмеженнями початкової задачі і новою цільовою функцією:
за умов:
;
.
Нехай розв’язком такої задачі є точка .
З початкової точки в напрямку рухаємося з деяким довільним кроком , визначаючи координати нової точки у такий спосіб:
Для точки Хk+1 повторюємо розглянутий процес, для чого знову розраховуємо значення градієнта і т. д.
У такий спосіб знаходимо послідовність точок , які поступово наближаються до оптимального плану початкової задачі. Ітераційний процес повторюється до того моменту, поки значення градієнта цільової функції не стане рівним нулю або виконуватиметься умова , де — досить мале число, яке означає потрібну точність обчислень.
33. Симплексний метод. Умова оптимальності задач лінійного програування.
Графічний метод для визначення оптимального плану задач лінійного програмування доцільно застосовувати лише для задач із двома змінними. За більшої кількості змінних необхідно застосовувати інший метод. 1949 року такий метод був запропонований американським вченим Дж. Данцігом — так званий симплексний метод, або симплекс-метод.
Ідея цього методу полягає в здійсненні спрямованого перебору допустимих планів у такий спосіб, що на кожному кроці здійснюється перехід від одного опорного плану до наступного, який за значенням цільової функції був би хоча б не гіршим за попередній. Значення функціонала при переході змінюється в потрібному напрямку: збільшується (для задачі на максимум) чи зменшується (для задачі на мінімум).
Процес розв’язання задачі симплекс-методом має ітераційний характер: однотипні обчислювальні процедури (ітерації) повторюються у певній послідовності доти, доки не буде отримано оптимальний план задачі або з’ясовано, що його не існує.
Отже, симплекс-метод — це ітераційна обчислювальна процедура, яка дає змогу, починаючи з певного опорного плану, за скінченну кількість кроків отримати оптимальний план задачі лінійного програмування.
Умова оптимальності плану задачі на відшукання мінімального значення функціонала: якщо для деякого плану розклад всіх векторів у даному базисі задовольняє умову
то план Х0 є оптимальним розв’язком задачі лінійного програмування.
Отже, для того, щоб план задачі лінійного програмування був оптимальним, необхідно і достатньо, щоб його оцінки були невід’ємними для задачі на максимум та недодатними для задачі на мінімум.
- 1.Економіко-математична модель. Класифікація моделей
- 2. Геометрична інтерпретація роз’язку цілочислових задач лінійного програмування.
- 4. Математичний інструмент, який використовується для побудови економіко-математ. Моделей.
- 6. Формула Тейлора. Матриця Гессе, її структура, та її використання для дослідження функцій на екстремум.
- 7. Системи нерівностей. Область допустимих розв’зків системи нерівностей.
- 8. Ознаки множинних розв’язків системи нерівностей, кутові точки.
- 9. Суть ідеї методу відтинання для задач цілочислового програмування.
- 10. Додатньо та від’ємно визначена матриця Гессе. Використання цих ознак матриці для дослідження функції на екстремум.
- 11. Загальний запис лінійної оптимізаційної моделі. Цільова функція та система обмежень.
- 12. Описати алгоритм розв’язання цілочислових задач лінійного програмування за методом Гоморі.
- 13. Метод приведеного градієнта (метод Якобі).
- 14. Допустимий план розв’язку задач лінійного програмування, опорний та оптимальний плани.
- 16. Матриця Якобі, матриця управління.
- 17. Векторно-математична форма запису задачі лінійного програмування.
- 18. Геометрична інтерпретація розвязку задач лінійного програмування на площині.
- 19. Градієнт функції
- 20. Основні властивості розв’язків задач лінійного програмування.
- 21. Геометрична інтерпретація лінійних оптимізаційних моделей на площині.
- 22. Описати алгоритм методу Гоморі розвязку задач цілочислового математичного програмування.
- 23. Симплексний метод розвязування задач лінійного програмування. Ідея методу.
- 24. Розвязування дробово-лінійної оптимізаційної задачі зведенням до задачі лінійного програмування.
- 25. Градієнтний метод. Ідея методу.
- 29. Окантована матриця Гессе, та її використання при розв'язку нелінійних задач.
- 30. Структура симплексної таблиці. Базисні та вільні вектори. Оцінковий рядок симплексної таблиці.
- 31. Приведення задачі дробово-лінійного програмування до оптимізаційної задачі лінійного програмування.
- 34. Цілочислові оптимізаційні моделі. Класифікація моделей цілочислової оптимізації.
- 35. Метод множників Лагранжа. Поняття абсолютного та умовного екстремуму функції.
- 36. Симплексний метод. Вибір напрямного стовпчика і рядка при здійсненні ітерації.
- 37. Загальний запис нелінійної оптимізаційної моделі.
- 39. Метод штучного базису. Суть базису.
- 40. Окантована матриця Гессе та її побудова.
- 43. Метод множників Лагранжа
- 44.Метод штучного базису
- 47.Нелінійні моделі. Визначення стац. Точок при викор. Методу множників Лагранжа
- 48.Правила побудови двоїстих задач
- 52. .Приведення дробово-лінійної оп-ної задачі до задачі лінійного програмування.
- 53. Сиплекс табл. Для задачі лінійного програм з штучним базисом
- 54. В яких випадках викор дроб-лін цільова ф-ція при розв’язуванні екон задач
- 56.Записати загальний запис моделі та записати економічний зміст коефіцієнтів моделі.
- 57.Описати алгоритм розвязання задач лінійного програмування симплексним методом.
- 58.Загальна структура симплексної таблиці при реалізації симплексного методу для задачі цілочислового програмування.
- 59.Градієнтний метод.Основна властівість градієнта.Ідея методу.
- 60. Загальний запис лінійної оптимізаційної задачі.Приведення моделі до канонічного вигляду.Описати економічний зміст кофіцієнтів.
- 60. Загальний запис лінійної оптимізаційної моделі. Приведення моделі до канонічного вигляду.Описати економічний зміст коефіцієнтів bj,cj,aij
- 61. Графічний метод розв’язання цілочислових задач лінійного програмування.
- 62. Визначення мін(макс) для цільової функції
- 64 Записати математичну модель оцінки рентабельності виготовленої продукції
- 65. Аналіз коефіцієнтів цільової функції cj, dj.
- 67. Пряма та двоїста задачі лінійного програмування. Визначення Lmin для двоїстої задачі по результатам симплексної таблиці прямої задачі.
- 68 Базисні та вільні вектори,базисні та вільні невідомі. Як визначити число базисних векторів по заданій матриці ∆
- 69. Загальний запис математичної моделі дробово-лінійної задачі приведення її до задачі лінійного програмування.
- 71.Чому дорівнюють .
- 72.Задачу в лінійному програмуванні в загальному вигляді привести до канонічного вигляду.Базисні і вільні зміні.Економічна інтерпретація коефіцієнтів моделі а,с,b.
- 73.Математичне програмування. Обєкт матем програмування. Визначення матем моделі.
- 75.Записати економіко-матем модель в загальному вигляді.
- 76.Окантована матриця Гесе. Достатні умови для ідентифікації екстремальних точок.
- 77. Базисні та вільні вектори. Визначення базисних векторів по заданій матриці ∆.
- 78. Визначення вільних векторів через базисні.
- 79. Що описує система обмежень задачі лінійного програмування Загальний запис економіко-математичної моделі.
- 80. Симплексний метод розв’язування задач лінійного програмування. Використання методу Жордана-Гаусса для визначення елементів аij симплексної таблиці.
- 81. Структура окантованої матриці н. Визначення матриць р, Рт, q. Використання матриці н для дослідження стаціонарних точок.
- 82. Економіко-математична модель. Правила, які потрібно дотримуватись при побудові такої моделі. Поняття адекватності економіко-математичної моделі.
- 83. Симлексна таблиця для задачі лінійного прорамування. Оцінючий та оцінючий стовпчик
- Структура симплексної таблиці для розв’язку задач лінійного програмування
- 84. Метод відтинання. Метод Гоморі. Як отримати нерівність правильного відтинання
- 85. Записати загальний запис математичного програмування. Лінійні та нелінійні моделі.
- 86. Cтруктура матриць а та Ат
- 87.Дробово- лінійне програмування. Система обмежень. Яку інформацію містять
- 88. Градієнтний метод Франка-Вульфа
- 89. Метод приведеного градієнта(метод Якобі).
- 90 Загальні форми запису лінійних оптимізаційних задач
- 91. Цілочислове програмування. В яких випадках воно використовується. Геометричний розв’язок цілочислових задач на пощині.
- 92.Дати визначення допустимого плану. Область існування планів,оптимальний план
- 93. Цілочислове програмування. Визначення оптимального плану для цілочислової моделі графічним методом на площині.
- 1.Економіко-математична модель. Класифікація моделей.
- 2. Геометрична інтерпретація роз’язку цілочислових задач лінійного програмування.
- 3. Глобальний та умовний екстремуми цільової функції. Необхідна умова існування екстремуму.
- 214 Феф ми найкращі Дякую всім, хто приймав участь