logo
My_horosho_postaralis_2003_WORD

67. Пряма та двоїста задачі лінійного програмування. Визначення Lmin для двоїстої задачі по результатам симплексної таблиці прямої задачі.

Кожній задачі лінійного програмування відповідає двоїста, що формується за допомогою певних правил безпосередньо з умови прямої задачі.

Якщо пряма задача лінійного програмування має вигляд

Загальна лінійна економіко-математична модель економічних процесів та явищ — так звана загальна задача лінійного програмування подається у вигляді:

за умов:

(2.2) (2.3)То двоїста задача записується так: →min

Для побудови двоїстої задачі необхідно звести пряму задачу до стандартного виду. Вважають, що задача лінійного програмування подана у стандартному вигляді, якщо для відшукання максимального значення цільової функції всі нерівності її системи обмежень приведені до виду « », а для задачі на відшукання мінімального значення — до виду « ».Якщо пряма задача лінійного програмування подана в стандарт­ному вигляді, то двоїста задача утворюється за такими правилами:

1. Кожному обмеженню прямої задачі відповідає змінна двоїстої задачі. Кількість невідомих двоїстої задачі дорівнює кількості обмежень прямої задачі.

2. Кожній змінній прямої задачі відповідає обмеження двоїстої задачі, причому кількість обмежень двоїстої задачі дорівнює кількості невідомих прямої задачі.

3. Якщо цільова функція прямої задачі задається на пошук найбільшого значення (max), то цільова функція двоїстої задачі — на визначення найменшого значення (min), і навпаки.

4. Коефіцієнтами при змінних у цільовій функції двоїстої задачі є вільні члени системи обмежень прямої задачі.

5. Правими частинами системи обмежень двоїстої задачі є коефіцієнти при змінних у цільовій функції прямої задачі.

6. Матриця

,що складається з коефіцієнтів при змінних у системі обмежень прямої задачі, і матриця коефіцієнтів у системі обмежень двоїстої задачі

утворюються одна з одної транспонуванням, тобто заміною рядків стовпчиками, а стовпчиків — рядками.

Процес побудови двоїстої задачі зручно зобразити схематично:

Пари задач лінійного програмування бувають симетричні та несиметричні.

У симетричних задачах обмеження прямої та двоїстої задач є лише нерівностями, а змінні обох задач можуть набувати лише невід’ємних значень.

У несиметричних задачах деякі обмеження прямої задачі можуть бути рівняннями, а двоїстої — лише нерівностями. У цьому разі відповідні рівнянням змінні двоїстої задачі можуть набувати будь-яких значень, не обмежених знаком.

Всі можливі форми прямих задач лінійного програмування та відповідні їм варіанти моделей двоїстих задач у матричній формі наведено нижче.

Пряма задача

Двоїста задача

Cиметричні задачі

max F = CX

AX ≤ B

X ≥ 0

min Z = BY

ATY ≥ C

Y ≥ 0

min F = CX

AX ≥ B

X ≥ 0

max Z = BY

ATY ≤ C

Y ≥ 0

Якщо пряма задача лінійного програмування має оптимальний план Х*, визначений симплекс-методом, то оптимальний план двоїстої задачі Y* визначається зі співвідношення Y* = , де - вектор-рядок, що складається з коефіцієнтів цільової функції прямої задачі при змінних, які є базисними в оптимальному плані; - матриця, обернена до матриці D, складеної з базисних векторів оптимального плану , компоненти яких узято з початкового опорного плану задачі.

За допомогою зазначеного співвідношення під час визначення оптимального плану однієї з пари двоїстих задач лінійного програмування знаходять розв’язок іншої задачі.