2.1.1. Реализация языков программирования стандарта мэк 6-1131/3 в системе trace mode
В программном пакете TRACE MODE 6 предоставляется широкий набор средств программирования задач АСУТП и бизнес-приложений (АСУП), ориентированный на специалистов разной квалификации и профессиональной подготовки. В систему TRACE MODE 6 включены 5 языков программирования – Techno SFC, Techno LD, Techno FBD, Techno ST, и Techno IL. Данные языки являются расширением языков международного стандарта МЭК 6-1131/3:
SFC (Sequential Function Chart),
LD (Ladder Diagram),
FBD (Function Block Diagram),
ST (Structured Text) и
IL (Instruction List).
Данный стандарт разрабатывается с 1993 года Международной Электротехнической Комиссией (International Electrotechnical Commission) и давно признан как в Европе и в США, так и во всем мире ведущими производителями средств автоматизации.
Языки программирования TRACE MODE 6 стандарта МЭК 6-1131/3 включают в себя 3 визуальных языка (FBD, SFC, LD), ориентированных на инженеров и бизнес-аналитиков и 2 текстовых (ST, IL), ориентированных на программистов. С помощью языков IEC 61131-3 в TRACE MODE 6 одинаково комфортно программируются и контроллеры, и алгоритмы человеко-машинного интерфейса (HMI).
Языки МЭК 6-1131/3 TRACE MODE 6 сочетают в себе достаточную функциональность, простоту и предохраняют пользователя TRACE MODE 6 от большинства ошибок, которые нередко возникают при использовании обычных языков программирования. Реализация МЭК 6-1131/3 в интегрированной системе TRACE MODE 6 не только полностью удовлетворяет требованиям стандарта, но и предоставляет пользователю дополнительный сервис в виде расширенного набора библиотек функциональных блоков, реализующих типовые алгоритмы управления.
Для всех 5 языков существует единый механизм связи с базой данных реального времени TRACE MODE 6. Каждая программа обладает набором аргументов, исходные данные передаются в программу через входные аргументы, а результаты вычислений возвращаются в выходных аргументах. Аргументы связываются с атрибутами каналов TRACE MODE 6, т.е. с реальными входами и выходами контроллеров и УСО, ячейками корпоративных баз данных, либо с внутренними переменными. Таким образом, одна и та же программа может вызываться несколько раз за цикл для обработки разных потоков данных.
Программирование и отладка программ на языках МЭК 6-1131/3 в TRACE MODE 6 производится в интегрированной среде разработки, включающей в себя несколько различных редакторов. Программы на языках Techno FBD, Techno LD и Techno SFC создаются и отлаживаются в специальных визуальных редакторах, а Techno ST и Techno IL представляют собой более традиционные языки, программирование на которых осуществляется в текстовом редакторе. Несмотря на различия, программы на разных языках стандарта МЭК 6-1131/3 в TRACE MODE 6 могут взаимодействовать между собой. Например, программа на Techno FBD может вызывать функциональный блок, написанный на языке Techno ST, а внутри этого блока может вызываться подпрограмма на Techno LD и т.д. Такая гибкость в выборе средств описания алгоритмов позволяет эффективно работать над одной задачей и программисту, и технологу, и инженеру-наладчику и бизнес-консультанту, когда каждый из них выполняет свою часть работы удобным ему способом.
- Автоматизированные информационно-управляющие системы Учебное пособие
- Оглавление
- Часть I. Автоматизированные информационно-управляющие системы Основные понятия
- Глава 1. Информационно-управляющие системы реального времени §1.1. Особенности информационно-управляющих систем реального времени
- 1.1.1. Определение и основные характеристики информационно-управляющих систем реального времени
- 1.1.2. Операционные системы реального времени
- 1.1.3. Обзор систем реального времени
- §1.2. Построение информационно-управляющих систем реального времени на базе операционной системы qnx
- §1.3. Scada – системы
- §1.4. Scada – система trace mode
- 1.4.1. Обзор системы trace mode
- 1.4.2. Функциональная структура пакета
- 1.4.3. Обзор внедрения системы trace mode
- §1.5. Программно-технический комплекс DeltaV
- 1.5.1. Обзор системы DeltaV
- 1.5.2. Концепции системы DeltaV
- 1.5.3. Программные приложения DeltaV
- §1.6. Программно-технический комплекс Квинт
- 1.6.1. Описание
- 1.6.2. Структура программно-технического комплекса Квинт
- 1.6.3. Архитектура
- 1.6.4. Контроллеры
- 1.6.5. Рабочие станции
- 1.6.6. Сети
- 1.6.7. Система автоматизированного проектирования асу тп
- 1.6.8. Примеры внедрения
- §1.7. Системы автоматизации фирмы Siemens8
- 1.7.1. Состав программно-технического комплекса Totally Integrated Automation
- 1.7.2. Примеры автоматизации технологических процессов9
- §1.8. Системы автоматизации фирмы авв10
- 1.8.1. Основные направления деятельности
- 1.8.2. Системы управления, предлагаемые авв Автоматизация в России
- Глава 2. Обеспечивающие подсистемы информационно-управляющих систем и их характеристики §2.1. Программное обеспечение управления процессами
- 2.1.1. Реализация языков программирования стандарта мэк 6-1131/3 в системе trace mode
- 2.1.2. Описание языков программирования
- 2.1.3. Реализация регуляторов и объектов управления в scada-системе TraceMode
- §2.2. Программное обеспечение секвенциально-логического управления
- 2.2.1. Программируемые логические контроллеры
- 2.2.2. Языки программирования логических контроллеров
- 2.2.3. Пример реализации секвенциально-логических алгоритмов в trace mode
- §2.3. Средства идентификации и оптимизации
- 2.3.1. Идентификация характеристик технологических объектов
- 2.3.2. Идентификация характеристик технологических объектов с использованием стандартных методов Excel
- 2.3.3. Решение задачи оптимизация технологических объектов
- §2.4. Средства интеллектуального анализа данных
- 2.4.1. Общие представления о Data Mining13
- 2.4.2. Задачи Data Mining
- 2.4.3. Классы систем Data Mining
- 2.4.4. Основные этапы Data Mining
- Глава 3. Проектирование информационно-управляющих систем §3.1. Основные проблемы, системный подход и последовательность разработки
- §3.2. Адаптация информационно-управляющих систем к области применения
- §3.3. Информационные технологии проектирования иус
- §3.4. Концепции информационного моделирования
- Часть II. Примеры автоматизированных информационно-управляющих систем в управлении энергетической эффективностью технологических процессов
- 1. Оперативное управление технологическими процессами с прогнозом показателей энергетической эффективности16
- 2. Оперативное управление потоками энергетических ресурсов в производственных сетях с учетом динамики их аккумулирования19
- 3. Автоматизированная система диспетчерского управления теплоснабжением зданий на основе полевых технологий20
- 4. Паспортизация промышленных потребителей топливно-энергетических ресурсов с использованием средств автоматизации21
- 5. Оперативное управление экономичностью водяных тепловых сетей на основе макромоделирования22
- Подсистема автоматизированного анализа режимов теплоснабжения
- Методика анализа режимов тепловых сетей на основе макромоделирования
- Программное обеспечение анализа режимов тепловых сетей на основе макромоделирования
- 6. Оперативное регулирование экономичности горения в энергетических котлах24
- 7. Автоматизированный мониторинг тепловой экономичности оборудования электрических станций 27
- Резервы тепловой экономичности котлов
- Показатели энергетических ресурсов турбоагрегатов
- Резервы тепловой экономичности турбоагрегатов
- Оптимальное использование пара
- 8. Оптимизация нагрузки параллельно работающих турбоагрегатов по данным эксплуатации при неполных исходных данных28
- Постановка задачи оптимизации
- Решение задачи оптимизации
- Программа «тг-пар»
- Пример работы программы
- 9. Автоматизированная информационная система мониторинга остаточного ресурса энергетического оборудования30
- Методика оценки обобщенного остаточного ресурса энергетического оборудования
- Алгоритм оперативной оценки обобщенного остаточного ресурса энергооборудования с учетом состояния металла
- Программное обеспечение аис «Ресурс»
- 10. Автоматизированное управление процессами в охладительных установках электрических станций35
- Факторы, влияющие на охлаждение
- Устройство и основные характеристики градирен
- Оптимизация работы башенных градирен
- 11. Автоматизированная компрессорная установка41
- Математическое описание объекта управления
- Анализ вариантов установки пароструйного компрессора для подачи пара в деаэраторы энергокорпуса
- Автоматизированная система управления пароструйным компрессором
- 12. Лингвистический подход к оптимизации управления вельц-процессом45
- Алгоритм выделения области Парето-оптимальных режимов в информационной базе данных
- Нечеткие зависимости (лингвистические правила) в управлении процессом вельцевания
- 13. Энергетический менеджмент производства огнеупоров48
- Приложение. Обзор промышленных сетей
- 1. Протокол передачи данных modbus50
- 2. Протокол передачи данных bitbus
- 3. Протокол передачи данных anbus
- 4. Протокол передачи данных hart
- 5. Протокол передачи данных profibus52
- 5.1. Независимые от поставщика взаимодействия между промышленными объектами (Fieldbus Communication).
- 5.2. Семейство profibus
- 5.3. Основные характеристики profibus-fms и profibus-dp
- 5.3.1. Архитектура протокола profibus
- 5.3.2. Физический Уровень (1) протокола profibus
- 5.4.1. Прикладной Уровень (7)
- 5.4.2. Коммуникационная модель
- 5.4.3. Объекты коммуникации
- 5.4.4. Сервисные функции fms
- 6. Полевая шина foundation Fieldbus53