Решение систем обыкновенных дифференциальных уравнений с заданными начальными условиями.
Пример 1.1.
Дана система дифференциальных уравнений:
(1. 0)
Программа решения примера 1.1
Создание М-функции под именем dif31.m
function dx31=dif31(t,x);
dx31=[-x(1)+2;2*x(1)^2-0.5*x(2)];
Рис.1. 27. Создание нового М-файла из меню.
Рис.1. 28. Создание М-функции.
Создание М-сценария под именем ddd45_31.m
Рис.1. 29. Создание нового М-файла из панели инструментов.
Сценарий решения с помощью ode45
T=[0 15]; % Интервал интегрирования
x0=[10;5]; % Начальные условия
[t,x]=ode45('dif31',T,x0); %t, x — выходные переменные решателя ode45
plot(t,x),grid,title('Пример 1.1'),legend('X1','X2')
Рис.1. 30. Создание М-сценария.
Запустить решение модели, нажав кнопку «RUN» файла сценария ddd45_31.m
Результат моделирования:
Рис.1. 31. Графическая иллюстрация решения.
Для просмотра решения покоординатно, можно вывести таблицу значений в рабочее окно MatLab, дважды щелкнув левой кнопкой мыши на пиктограмме матрицы фазовых координат в правой части рабочего пространства. Таблица появится в среднем окне.
Рис.1. 32. Табличная иллюстрация решения.
Шаг изменения времени можно отследить, раскрыв аналогичным образом вектор времени t:
Рис.1. 33. Отслеживание изменения времени.
- Лабораторная работа №1. Аналитическое моделирование.
- I.Статичные аналитические модели оптимизации. Построение в среде ms Excel.
- Задача линейного программирования (злп).
- I этап: Анализ словесного описания задачи
- II этап: Построение математической модели
- III этап: Формирование задачи выбора наилучшей стратегии
- Решение задач линейного программирования с помощью надстройки «поиск решений» в среде excel
- Задача оптимального использования ресурсов
- Запуск «Поиска решения»
- Создание отчета по результатам поиска решения
- Индивидуальные варианты заданий.
- II. Статичные аналитические модели, описываемые уравнениями. Построение в среде MathCad.
- Решение уравнений средствами Mathcad
- Построение графиков в MathCad
- Рекомендации по использованию функции root.
- Нахождение корней полинома
- Символьное решение уравнений
- Индивидуальные варианты заданий.
- III. Динамические аналитические модели. Построение в среде MatLab.
- Решение обыкновенных дифференциальных уравнений в matlab.
- Решение систем обыкновенных дифференциальных уравнений с заданными начальными условиями.
- Решение дифференциальных уравнений второго порядка.
- Интегрирование систем линейных дифференциальных уравнений в матричном виде.
- Варианты заданий. Общие задания.
- Индивидуальные задания.
- Лабораторная работа №2. Построение аналитической модели по результатам эксперимента.
- I. Построение модели в среде Excel.
- II. Построение модели в среде Statistica. Общие сведения о программе Statistica.
- III. Построение модели в среде Origin Pro.
- Индивидуальные варианты заданий.
- Лабораторная работа №3. Модели массового обслуживания.
- I. Построение модели в среде AnyLogic.
- Пользовательский интерфейс
- Общая информация о создании моделей в Enterprise Library
- Моделирование одноканальной смо с очередью.
- Моделирование многоканальной смо с очередью.
- Сбор статистики о времени обслуживания клиента.
- Индивидуальные варианты заданий.
- Лабораторная работа №4. Моделирование интеллектуальных систем. Нейросеть обратного распространения ошибки.
- I. Обзор использования пакета Excel Neural Package.
- II. Обзор использования пакета Deductor.
- III. Обзор использования пакета statistica Neural Networks.
- Индивидуальные варианты заданий.
- Лабораторная работа №5. Моделирование интеллектуальных систем. Нейронная сеть для кластеризации.
- I. Теоретические сведения.
- II. Проектирование карты Кохонена в пакете Excel Neural Package.
- III. Проектирование карты Кохонена в пакете Deductor.
- IV. Проектирование карты Кохонена в пакете Statistica.
- Индивидуальные варианты заданий.
- Лабораторная работа №6. Моделирование интеллектуальных систем. Система нечеткого вывода.
- I. Постановка задачи.
- II. Процесс разработки системы
- Индивидуальные варианты заданий.