Слоеные списки
Слоеные (skip) или разделенные списки – это связные списки, которые позволяют перескакивать через некоторое количество элементов. Это позволяет преодолеть ограничения последовательного поиска, являющейся основной причиной низкой эффективности поиска в линейных списках. В то же время вставка и удаление остаются сравнительно эффективными.
Идея, лежащая в основе слоеных списков, очень напоминает метод, используемый при поиске имен в адресной книжке. Чтобы найти имя, ищется страница, помеченная буквой, с которой начинается имя, а затем поиск осуществляется в пределах этой страницы.
В отличие от элементов обычных линейных списков, элементы этих списков имеют дополнительный указатель. Все элементы списка группируются по определенному признаку, и первый элемент каждой группы содержит указатель на первый элемент следующей группы. Если следующая группа отсутствует или элемент не является первым в группе, то этот дополнительный указатель принимает значение nil.
Эта простая идея может быть расширена – можно добавлять нужное число дополнительных указателей, группируя группы элементов и т.д. на нужном количестве уровней.
Если реализован только один уровень, то это, фактически, обычный список и время поиска пропорционально O(n). Однако если имеется достаточное число уровней, то разделенный список можно считать деревом с корнем на высшем уровне, а для дерева время поиска, как будет показано ниже, пропорционально O(log n).
Рисунок 12. Слоеный список и его организация
-
Графы
-
Содержание
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67
-