Запись и обработка звука
Попробуем разобраться, как звуковые колебания можно представить в цифровом виде.
Как видно из амплитудно-временного графика звукового сигнала (волновой фор-мы), в любой момент звучания амплитуда сигнала имеет конкретное значение, которое может быть измерено и выражено некоторым числом. Таким образом, если мы точно измерим амплитуду сигнала в каждый момент времени и выразим ее в числовом виде, полученный ряд чисел будет точной записью исходного звукового сигнала. Эта последовательность чисел может быть преоб-разована в двоичную форму и записана на любой носитель, в том числе в память компьютера.
Однако здесь мы сталкиваемся с большой проблемой, поскольку звуковой сигнал, вообще говоря, непрервен, то есть количество точек на его графике бесконечно. Следовательно, для получения действительно точной цифровой записи звукового сигнала измерять его амплитуду нужно через бесконечно малые промежутки вре-мени (и, следовательно, бесконечное количество раз, а полученный числовой мас-сив будет бесконечно велик). Более того, на “линейке” шкалы измерения ампли-туды должно быть бесконечное количество градаций, то есть весь динамический диапазон должен выражаться числами от - до + (или “хотя бы” от 0 до + ). Естественно, в действительности мы можем провести измерения лишь конечное число раз, используя конечное количество амплитудных градаций (этот параметр называют амплитудным разрешением). Возникает вопрос: через какие промежут-ки времени и с каким амплитудным разрешением следует проводить измерения, чтобы звук на выходе не сильно отличался от исходного сигнала (рис. 7.5)?
Рис.7.5. Дискретизация сигнала 440 Гц с частотой 5000 Гц
Согласно известной теореме Котельникова (иногда её называют теоремой Найквиста), для отображения сигнала некоторой частоты f необходима дискретизация (сканирование и измерение амплитуд сигнала) с частотой не менее 2f. Поскольку человеческий слух может воспринимать звуковые колебания с частотой до 18 кГц, по-лучается, что частота дискретизации любого звукового сигнала должна быть не менее 36 кГц. На практике обычно используются частоты дискретизации от 11 025 до 48 000 Гц (например, на звуковых компакт-дисках она составляет 44 100 Гц), а в последнее время стала использоваться частота 96 кГц (она определена как стан-дартная для DVD-дисков).
Что касается амплитудного разрешения, то можно заметить, что точность воспро-изведения повышается с увеличением количества градаций амплитудной шкалы. В звуковых компакт-дисках используется 65 536 амплитудных града-ций. Как известно, для представления чисел в диапазоне от 0 до 65 535 необходи-мо 16 бит информации, поэтому часто бывает удобнее говорить о 16-битном раз-решении (а в просторечии - о 16-битном звуке). Ранее часто использовались 8-битное разрешение (256 градаций) и 12-битное (4096 градаций), звучащие с боль-шими искажениями. На современном этапе звук обрабатывается, как правило, при 24-битном или 32-битном разрешении (16 777 216 или 4 294 967 296 амплитуд-ных градаций).
Для того чтобы преобразовать звук в цифровую форму, используются специаль-ные устройства - аналого-цифровые преобразователи (АЦП). От качества АЦП зависит качество полученного цифрового сигнала, и если преобразование произ-ведено плохо, то впоследствии придется затратить массу сил и времени на то, чтобы исправить положение. Поэтому рекомендую пользоваться только качественными АЦП.
Несмотря на все преимущества цифрового сигнала, его нельзя услышать напря-мую. Для того чтобы его услышать, перед подачей на усилитель и колонки сигнал необходимо преобразовать в аналоговый, для чего используются цифро-аналого-вые преобразователи (ЦАП). ЦАП должен быть также высокого качества, посколь-ку все достоинства цифрового сигнала и его гибкой компьютерной обработки мо-гут превратиться в ничто, если звук будет воспроизведен через некачественный ЦАП. АЦП и ЦАП установлены на любой звуковой карте.
Теперь поговорим немного о том таким же образом происходит запись звука в компьютер. Компьютер представляет собой сложный цифровой аппарат. Вся информация в нем содержится в цифровом виде. Таким образом, и все процессы происходящие в компьютере - это обработка цифровых сигналов. По этой причине звуковую информацию, с которой мы бы хотели работать в дальнейшем, необходимо оцифровать. Итак, что же такое оцифровка и какие устройства и какие устройства обеспечивают этот процесс.
Оцифровка является одной из основных функций звуковых карт. Изъясняясь научным языком, она включает в себя два процесса - процесс дискретизации по времени (осуществление выборки, сэмплирование) и процесс квантования по уровням.
Процесс дискретизации - это процесс получения значений величин преобразуемого сигнала в определенные промежутки времени. Квантование - процесс замены реальных значений сигнала приближенными с определённой точностью. Попробуем разобраться. Итак, мы выяснили, что для записи сигнала в компьютер его необходимо преобразовать в цифровые значения. Для этого поступают следующим образом. Выбирается ка-кой-то временной шаг (интервал), с которым берутся значения уровня сиг-нала. Этот шаг называется шагом дискретизации. Естественно, чем шаг меньше, тем большее количество значений сигнала мы можем взять в оп-ределенный промежуток времени, и, соответственно, тем с большей точ-ностью будет “взят” сигнал. Процесс дискретизации во времени представ-лен на рисунке 7.6.
Уровень
-
9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7
6
5
4
3
2
1
0
∆t Время
Рис 7.6. Процесс оцифровки сигнала
Казалось бы, что для записи значений сигнала мы сделали все необходимое. Теперь осталось лишь записать численные значения сигнала в файл. Однако, здесь мы сталкиваемся с проблемой: ведь значения сигнала не могут быть записаны с бесконечной точностью. Поэтому значения сигнала квантуют по уровню. Это значит, что полученные в процессе дискретизации значения сиг-нала делятся на уровни квантования (quantization levels) и каждое значение ок-ругляется до ближайшего уровня. Таким способом получают конечные значе-ния амплитуд сигнала. Отметим снова, что и в данном случае чем больше уровней квантования, тем более точно будут записаны численные значения уровня сигнала.
-Чем меньше шаг дискрети-зации (другими словами, чем выше частота выборки) и чем больше уровней квантования, тем с большей точностью происходит оцифровка сигнала и тем более приближенно к оригиналу он будет звучать при воспроизведении (т.е. при цифро-аналоговом преобразовании). Чтобы избе-жать искажений при оцифровке, нужно следить за тем, чтобы динамический диапазон сигнала соответствовал динамическому диапазону АЦП, или, други-ми словами, чтобы значения сигнала не выходили за рамки максимального и минимального уровней квантования.
Вспомним, что человеческое ухо способно слышать звук на частотах при-близительно от 30 Гц до 20 КГц. Выше располагается спектр неслышимых для человека частот. В связи с этим важно отметить, что максимальная частота дис-кретизации (выборки) определяет максимальную частоту оцифровываемого сигнала. Точнее говоря, максимальная частота сигнала будет примерно равна половине максимальной частоты дискретизации. Такая зависимость, как уже говорилось выше доказана в теореме Котельникова-Найквиста. В ней говорится о том, что для достижения баланса между качеством и полосой пропускания системы, необходимо, чтобы частота выборки вдвое превышала частоту звукового сигнала. Вернее, чтобы произвести успешную дискретизацию чисто синусоидального сигнала, часто-та дискретизации действительно должна быть ровно в два раза больше частоты синусоиды, в то время как оцифровку реального звукового сигнала нужно про-изводить на частоте немного большей, чем удвоенная частота самого сигнала, то есть с запасом.. Приведем конкретный пример. Если, скажем, вы оцифровали звук с частотой дискретизации 20 КГц, то это будет означать, что фактически оцифрованный звук содержит частоты до 10 КГц, т.е. низкие и средние частоты.
Следует обратить внимание на то, что в процессе оцифровки к полезному сигналу прибавляются различные шумы. Один из таких шумов - джиттер (jitter). Джиттер появляется в результате того, что осуществление выборки сигнала происходит не через абсолютно равные промежутки времени, а с какими-то отклонениями. То есть если, скажем, дискретизация проводится с частотой 44.1 КГц, то отсчеты берутся не точно каждые 1/44100 секунды. А так как входной сигнал постоянно меняется, то такая ошибка приводит к “захвату” не совсем верного уровня сигнала. В результате во время проигрывания оцифрованного сигнала чувствуется некоторое дрожание. Появление джиттера является результатом неабсолютной стабильности АЦП. Для борьбы с этим явлением применяют высокостабильные тактовые генераторы.
Как же происходит оцифровка с точки зрения пользователя? Оказывается, всё намного проще, чем могло показаться на первый взгляд. Для оцифровки какого-либо сигнала его необходимо подать на вход звуковой карты (то есть фактически соединить вход звуковой карты с выходом того устройства, с которого будет подан сигнал), запустить специальную программу, выбрать параметры записи, нажать кнопку записи и сохранить результат (грубо говоря, набор байтов) в файле. Процесс оцифровки происходит в режиме реального времени. Например, вы хотите оцифровать с аудиокассеты какую-то песню продолжительностью 2 минуты, то для этого необходимо подключить магнитофон ко входу звуковой карты, запустить упо-мянутую выше программу, перевести ее в режим записи (оцифровки) и вклю чить магнитофон на воспроизведение. По окончании песни нужно остановить процесс оцифровки и записать результат в файл. Вот и все!
Итак, что же следует запомнить из вышесказанного? По сути, совсем не-много - оцифрованная аудиоинформация всегда характеризуется тремя пара-метрами:
• частотой дискретизации или sampling rate где (например, 8, 11, 44, 48 КГц и т.д.);
• уровнем квантования (разрядностью) или quantization level (8, 16, 18, 20, 24 или 32 бита);
• количеством каналов (1 - моно, 2 - стерео и т.д.).
Очевидно, что проигрывать оцифрованный звук нужно с теми же парамет-рами, с которыми его оцифровывали. Можно, конечно, поэкспериментировать и, например, звук, оцифрованный с частотой дискретизации 22 КГц, проиграть на частоте 44 КГц. Тогда вы получите точно такой же результат, что и при уско-ренном воспроизведении аудиозаписи на магнитной ленте.
- Военный университет министерства обороны
- Чешуин с.А.
- Математика и информатика
- Москва – 2004
- Оглавление
- Список сокращений
- Предисловие
- Глава 1. Вводная
- § 1.1. Теоретические основы информатики
- I. Цель, задачи, основные требования к процессу изучения дисциплины «Математика и Информатика»
- II. Предмет и структура информатики.
- § 1.2. Кибернетические аспекты информатики
- I. Информационная деятельность человека (военного специалиста)
- II. Количество и измерение информации
- Заключение
- Контрольные вопросы и задания
- Глава 2. Основные понятия и методы теории информации и кодирования
- § 2. 1. Информация и её свойства
- I. Понятие и классификация информации
- Виды и свойства информации
- III. Общая характеристика процессов сбора, передачи обработки и хранения информации
- § 2.2. Представление информации
- Абстрактный алфавит
- Двоичное кодирование информации
- Кодирование информации различной формы
- § 2.3. Системы счисления используемые в информационных технологиях
- Представление информации в эвм. Системы счисления (сс) и формы представления чисел. Позиционные сс
- Двоичная Арифметика
- Восьмеричная сс
- Методы перевода чисел из одной системы счисления в другую
- Метод перевода целых чисел
- Метод перевода правильных дробей
- IV. Варианты представления информации в эвм (пк)
- Заключение
- Контрольные вопросы и задания
- Глава 3. Математические модели решения информационных и вычислительных задач
- § 3.1. Комплексное аналитическое и имитационное моделирование
- Поэтому в научных и практических исследованиях существуют два направления:
- I. Цель, задачи и основные требования к математическому моделированию информационных процессов
- II. Метод построения комплексных аналитических и имитационных моделей
- III. Сравнительный анализ подходов к математическому описанию информационных процессов
- § 3.2. Математический аппарат теории множеств
- Основные понятия теории множеств. Операции над множествами
- Операции булевой алгебры
- Основные термины математической логики
- Операции булевой алгебры
- 1. Логическое сложение (дизъюнкция, или)
- 2. Логическое умножение (конъюнкция, и)
- 3. Логическое отрицание (инверсия, не)
- Поглощения
- Алгебра высказываний, исчисление высказываний
- 1. Доказать табличным способом соотношения
- Логический вывод
- Продукционное правило
- Декларативное правило
- § 3.3. Математический аппарат теории графов
- Понятие графа
- Правила нумерации событий в сетевом графе методов вычёркивания дуг:
- Отношения и графы, Свойства и типы однородных отношений
- Перечень мероприятий:
- Синтез эталонного графа:
- Оптимизация эталонного графа
- Синтез текущего граф
- Сравнение текущего графа с эталонным
- Вывод-распознавание объекта.
- § 3.4. Математический аппарат теории вероятности и прикладной статистики
- Основные понятия теории вероятности и прикладной статистики
- Основные направления исследования
- Случайные события
- 1. Основные понятия комбинаторики
- 2. Пространство элементарных событий
- 3. Классификация случайный событий
- Случайные величины
- 4. Дискретная случайная величина
- 5. Функция распределения случайной величины и её свойства
- 6. Непрерывная случайная величина
- 7. Числовые характеристики случайной величины
- II. Табличное представление экспертных данных. Числовые характеристики выборки, упрощенные методы вычисления характеристик Предмет и основные задачи математической статистики
- Генеральная и выборочная совокупности
- Упрощённые методы вычисления характеристик
- Статистический подход к определению вероятности. Вычисление вероятностей сложных событий. Условные вероятности. Формула Байеса
- 1. Определение вероятностей случайных событий
- 2. Определение вероятностей совместных событий
- 3. Определение условной вероятности
- 4. Теорема о полной вероятности
- 5. Формула Байеса
- 6. Формула Бернулли
- Формула Бернулли
- § 3.5. Математический аппарат регрессионного и корреляционного анализа
- Корреляционный анализ. Коэффициент корреляции и его оценка
- Регрессионный анализ. Простая и линейная регрессия
- Ранговые корреляционные статистики. Устойчивость оценки
- Построим график полученной прямой на поле корреляции по двум точкам
- Заключение
- Контрольные вопросы и задания
- Глава 4. Архитектура персонального компьютера
- § 4. 1. Информационно-логические основы построения электронно-вычислительных машин
- I. Структурная схема канонической эвм
- II. Принципы программного управления.
- Структура и виды команд
- Состав машинных команд
- III. Классификации компьютеров
- По способу организации обмена информацией
- 2. По назначению:
- 3. По назначению, размерам и функциональным возможностям:
- На базе большой эвм
- Другие виды классификации компьютеров
- 4. Классификация по уровню специализации.
- 5. Классификация по типоразмерам.
- 6. Классификация по совместимости.
- 7. Классификация по типу используемого процессора.
- История развития Электронно-вычислительных машин
- 8. По элементной базе, использованной при создании эвм. Исторический аспект (поколения развития техники и технологии микропроцессоров)
- § 4.2. Функционально – структурная организация пэвм
- I. Структура пэвм и назначение устройств
- Основные блоки персонального компьютера и их назначение
- Элементы конструкции пк
- Системный блок
- Монитор
- Электронно-лучевые мониторы
- Жидкокристаллические мониторы (дисплеи)
- Клавиатура
- Видеокарта (видеоадаптер)
- Звуковая карта
- Системы, расположенные на материнской плате Оперативная память
- Процессор
- Микросхема пзу и система bios
- Энергонезависимая память cmos
- Функции микропроцессорного комплекта (чипсета)
- II. Функциональные характеристики пэвм
- III. Внутримашинный системный интерфейс
- Шины расширений
- Локальные шины
- § 4.3. Микропроцессоры и запоминающие устройства
- Типы, структура и порядок работы микропроцессора История развития микропроцессоров
- Типы, структура и порядок работы микропроцессора
- Типы микропроцессоров
- Порядок работы основных устройств микропроцессора
- Устройство управления
- Шина адреса
- Арифметико-логическое устройство
- Кодовая шина данных Кодовая шина инструкций
- Микропроцессорная память
- Интерфейсная часть микропроцессора
- Последовательность работы блоков персонального компьютера при выполнении команды
- Основная, внешняя и кэш – память Запоминающие устройства персонального компьютера
- Основная (внутренняя )память Физическая структура основной памяти
- Логическая структура основной памяти
- Отображаемая
- Внешняя память
- Логическая структура диска
- Накопители на жестких магнитных дисках
- Дисковые массивы raid
- Накопители на гибких магнитных дисках
- Накопители на оптических дисках (компакт-дисках) cd-rom
- Накопители на магнитной ленте
- Сравнительные характеристики запоминающих устройств
- Другие устройства хранения данных
- § 4.4. Внешние (периферийные) устройства персонального компьютера
- Устройства ввода информации Устройства командного управления
- Клавиатура
- Устройства ввода графических данных
- II. Устройства вывода информации Видеотерминальные устройства
- Разрешающая способность мониторов
- Монохромные мониторы
- Видеоконтроллеры
- Принтеры
- Матричные принтеры
- Струйные принтеры
- Лазерные принтеры
- III. Мультимедийные устройства
- Средства связи и телекоммуникаций
- Заключение
- Глава 5. Системное программное обеспечение пэвм
- § 5.1. Программное обеспечение пэвм
- I. Системное и прикладное программное обеспечение Системное программное обеспечение пэвм
- Прикладное программное обеспечение
- II. Назначение структура и порядок загрузки операционных систем. Файловая система Понятие и классификация операционных систем
- Семейства Операционных систем
- Назначение и структура ms dos
- Файловые системы
- Команды операционной системы ms dos
- Основные команды dos. Общие сведения о программах – оболочках Способы обращения к файлам в ос ms dos
- Основные команды dos
- 1) Смена текущего логического диска
- 2) Просмотр содержимого каталога
- 3) Создание каталогов
- 4) Удаление каталога
- 5) Копирование файлов
- 6) Просмотр содержимого файла
- 7) Удаление файлов
- 8) Переименование файлов (перемещение)
- 9) Форматирование диска
- Конфигурирование операционной системы ms dos
- Общие сведения о программах – оболочках
- Назначение, основные возможности и интерфейс операционной оболочки Norton Commander
- Основные методы работы с Norton Commander. Управление режимами отображения информации в панелях nc
- Работа с каталогами и файлами
- Работа с дисками
- Форматирование дискеты
- Копирование дискет
- Очистка дисков от лишней информации
- § 5.2. Операционные системы семейства Windows. Сервисное программное обеспечение
- Концепция Windows. Элементы пользовательского интерфейса. Особенности различных версий Общая характеристика операционной среды Windows
- Архитектура операционной среды Windows
- Операционная система Windows 98
- Операционная система Windows 2000
- Интерфейс пользователя
- Рабочий стол Windows
- Структура окна
- Операции с файловой структурой
- Работа с программой Проводник
- Настройка системы Windows
- Завершение работы
- Стандартные программы Windows
- Графический редактор Paint
- Текстовый редактор WordPad
- Калькулятор
- Сервисное программное обеспечение: резервирование информации, антивирусные средства, обслуживание дисков, ограничение доступа к информации
- Служебные программы
- Защита и резервирование информации
- Резервирование информации
- Компьютерные вирусы и антивирусные средства
- Защита от компьютерных вирусов
- Заключение
- Контрольные вопросы и задания
- Глава 6. Компьютерная обработка текстовой и графической информации
- § 6.1. Программное обеспечение «Microsoft office». Создание и обработка текстовых документов и электронных таблиц
- Цели, состав, решаемые задачи при помощи программного обеспечения «Microsoft office»
- Интерфейс текстового процессора. Основные технологические операции
- Основные версии текстового процессора Microsoft Word
- Рабочее окно процессора Microsoft Word 2000
- Приемы работы с командами строки меню
- Панели инструментов Microsoft Word 2000
- Основные принципы практической работы с текстовым процессором Microsoft Word
- Основные элементы текстового документа
- Связывание и встраивание объектов
- Интерфейс табличного процессора. Основные технологические операции
- Вычисления в электронных таблицах
- Применение электронных таблиц для расчетов
- Использование надстроек
- Построение диаграмм и графиков
- Заключение
- Контрольные вопросы и задания
- § 6.2. Концепции баз данных
- Назначение и компоненты баз данных
- Структура простейшей базы данных
- Свойства полей базы данных
- Типы данных
- Безопасность баз данных
- Этапы проектирования баз данных
- Характеристика субд Microsoft Access 2000
- Создание межтабличных связей
- Заключение
- Контрольные вопросы и задания
- § 6.3. Компьютерная графика
- Принципы формирования изображений
- Существует два принципа представления изображений:
- Растровая графика
- 2. Векторная графика
- Форматы графических данных
- Векторная и растровая графика
- Программное обеспечение компьютерной графики
- Рабочий стол Photoshop
- Окно изображения
- Строка состояния
- Панель инструментов
- Группа инструментов для работы с выделениями
- Инструменты «Рисование и редактирование»
- Инструменты наведения
- Управление цветами переднего и заднего планов
- Плавающие палитры
- Команды панели меню
- Команды настройки
- Фильтры
- Контуры
- Изменение цвета в изображении
- Запись операций
- Заключение
- Контрольные вопросы и задания
- Глава 7. Компьютерная обработка аудиоинформации
- § 7.1. Программное обеспечение компьютерной обработки аудиоинформации
- Направление движения предмета
- Назначение, состав и возможности программного обеспечения «СаkеWalk», «Sound Forge» и «Cool Edit»
- Волны находятся в фазе Волны в четверть фазы Волны в противофазе
- Уровень и громкость звука
- Тембр звука
- Стоячие волны и резонанс
- Форматы midi и wave
- § 7.2. Основы режиссуры
- Запись и обработка звука
- Способы хранения и сжатия звука
- Восстановление сигнала из цифрового вида в аналоговый
- Понятие «Sample» и семплирование
- Основные функции сэмплеров. Звуковая петля
- Основы режиссуры
- § 7.3. Работа с программным обеспечением «Cool Edit» Выбор рабочего формата
- Настройка редактора
- Окно редактирования сэмплов
- Запись и обработка звука в многоканальном звуковом файле
- Сведение звуковых дорожек в стереофайл Окно редактирования дорожек
- Заключение
- Контрольные вопросы и задания
- Глава 8. Компьютерная обработка видеоинформации
- § 8.1. Программное обеспечение компьютерной обработки видеоинформации
- Назначение, состав и возможности по « Adobe Premier»
- Конфигурация системы видеомонтажа
- Запись, экспорт, импорт видеофайлов, их компьютерная обработка
- Действия по оцифровке видеофайлов
- § 8.2. Основы видеорежиссуры
- Видеомонтаж
- Работа с окном Project
- Работа с окнами TimeLine и Monitor
- Переходы и Видеоэффекты
- Оцифровка видеофайлов и экспорт видеопрограмм
- Создание готового продукта
- Заключение
- Контрольные вопросы
- Глава 9. Информационные системы и компьютерные сети
- § 9.1. Информационные системы
- Основные понятия общей теории систем. Сущность системного подхода
- Сущность и принципы системного подхода
- Системный анализ предметной области: описание системы, выявление проблемы, выбор варианта решения
- Методика проведения системного анализа
- Основные понятия теории эффективности
- Основные понятия, виды обеспечения информационных систем. Технология «Клиент - Сервер»
- § 9.2. Основы построения и архитектура компьютерных сетей (кс)
- Назначение, классификация кс. Характеристика процесса передачи данных
- Характеристика процесса передачи данных.
- Эталонные модели взаимодействия систем. Протоколы кс
- Передающая среда
- Особенности организации локальных вычислительных сетей (лвс). Типовые технологии и методы доступа. Безопасность информации
- § 9.3. Работа компьютерной сети
- Организация доступа в сеть
- Глобальная сеть «Интернет» и её службы
- Службы Интернета
- Электронная почта (e-Mail)
- Способы организации передачи данных
- Заключение
- Контрольные вопросы и задания.
- Словарь терминов
- Литература