Векторная и растровая графика
Растровая графика
В видеопамяти находится двоичная информация об изображении, выводимом на экран. Эта информация состоит из двоичных кодов каждого видеопикселя.
Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:
• разрешение оригинала;
• разрешение экранного изображения;
• разрешение печатного изображения.
Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch — dpi) и зависит от требований к качеству изображения
и размеру файла, способу оцифровки или методу создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.
Разрешение экранного изображения. Для экранных копий изображения элементарную точку растра принято называть пикселем. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешения оригинала и масштаба отображения.
Мониторы для обработки изображений с диагональю 20-21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640x480, 800x600, 1024x768, 1280x1024, 1600x1200, 1600x1280, 1920x1200, 1920x1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22-0,25 мм.
Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.
Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch — Lpi) и называется линиатурой.
Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале приближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра. Такой метод называют растрированием с амплитудной модуляцией (AM). Существует и метод растрирования с частотной модуляцией (ЧМ), когда интенсивность тона регулируется изменением расстояния между соседними точками одинакового размера. Таким образом, при частотно-модулированном растрировании в ячейках растра с разной интенсивностью тона находится разное число точек. Изображения, растрированные ЧМ-методом, выглядят более качественно, так как размер точек минимален и, во всяком случае существенно меньше, чем средний размер точки при АМ-растрировании.
Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в передаче цветов и полутонов. Однако размеры файлов растровых иллюстраций стремительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего просмотра (стандартный размер 10x15 см, оцифрованный с разрешением 200-300 dpi, цветовое разрешение 24 бита), занимает в формате TIFF с включенным режимом сжатия около 4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4 занимает 120-150 Мбайт.
Масштабирование растровых изображений. Одним из недостатков растровой графики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное количество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию. Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточным для качественной визуализации при масштабировании. Другой прием состоит в применении стохастического растра, позволяющего уменьшить эффект пикселизации в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет масштабирования точек, а путем добавления необходимого числа промежуточных точек.
Векторная графика
Если в растровой графике базовым элементом изображения является точка, то в векторной графике — линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.
Линия — элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами {текстуры, карты) или выбранным цветом.
Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами.
Все прочие объекты векторной графики составляются из линий. Например куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно представить куб и как двенадцать связанных линий, образующих ребра (рис.6.21).
Математические основы векторной графики
Рассмотрим подробнее способы представления различных объектов в векторной графике.
Точка. Этот объект на плоскости представляется двумя числами (х, у), указывающими его положение относительно начала координат.
Прямая линия. Ей соответствует уравнение у = kx + b. Указав параметры k и Ь, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров.
Отрезок прямой. Он отличается тем, что требует для описания еще двух параметров — например, координат x1 и х2 начала и конца отрезка.
Рис. 6.21. Объекты векторной графики
Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба. Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:
х2 + а1у2 + а2ху + а3 к + а4 = 0.
Таким образом, для описания бесконечной кривой второго порядка достаточно пяти параметров. Если требуется построить отрезок кривой, понадобятся еще два параметра.
Понятие цвета
Цвет чрезвычайно важен в компьютерной графике как средство усиления зрительного впечатления и повышения информационной насыщенности изображения. Ощущение цвета формируется человеческим мозгом в результате анализа светового потока, попадающего на сетчатку глаза от излучающих или отражающих объектов. Считается, что цветовые рецепторы (колбочки) подразделяются на три группы, каждая из которых воспринимает только единственный цвет — красный, зеленый или синий. Нарушения в работе любой из групп приводит к явлению дальтонизма — искаженного восприятия цвета.
Световой поток формируется излучениями, представляющими собой комбинацию трех «чистых» спектральных цветов (красный, зеленый, синий — КЗС) и их производных (в англоязычной литературе используют аббревиатуру RGB — Red, Green, Blue). Для излучающих объектов характерно аддитивное цветовоспроизведение (световые излучения суммируются), для отражающих объектов — субтрактивное цветовоспроизведение (световые излучения вычитаются). Примером объекта первого типа является электронно-лучевая трубка монитора, второго типа — полиграфический отпечаток.
Физические характеристики светового потока определяются параметрами мощности, яркости и освещенности. Визуальные параметры ощущения цвета характеризуются светлотой, то есть различимостью участков, сильнее или слабее отражающих свет. Минимальную разницу между яркостью различимых по светлоте объектов называют порогом. Величина порога пропорциональна логарифму отношения яркостей. Последовательность оптических характеристик объекта (расположенная по возрастанию или убыванию), выраженная в оптических плотностях или логарифмах яркостей, составляет градацию и является важнейшим инструментом для анализа и обработки изображения.
Для точного цветовоспроизведения изображения на экране монитора важным является понятие цветовой температуры. В классической физике считается, что любое тело с температурой, отличной от 0 градусов по шкале Кельвина, испускает излучение. С повышением температуры спектр излучения смещается от инфракрасного до ультрафиолетового диапазона, проходя через оптический.
Для идеального черного тела легко находится зависимость между длиной волны излучения и температурой тела. На основе этого закона, например, была дистанционно вычислена температура Солнца — около 6500 К. Для целей правильного цветовоспроизведения характерна обратная задача. То есть, монитор с выставленной цветовой температурой 6500К должен максимально точно воспроизвести спектр излучения идеального черного тела, нагретого до такой же степени. Таким образом, стандартные значения цветовых температур используют в качестве всеобщего эталона, обеспечивающего одинаковое цветовоспроизведение на разных излучающих устройствах.
На практике зрение человека непрерывно подстраивается под спектр, характерный для цветовой температуры источника излучения. Например, на улице в яркий солнечный день цветовая температура составляет около 7000 К. Если с улицы зайти в помещение, освещенное только лампами накаливания (цветовая температура около 2800 К), то в первый момент свет ламп покажется желтым, белый лист бумаги тоже приобретет желтый оттенок. Затем происходит адаптация зрения к новому соотношению КЗС, характерному для цветовой температуры 2800 К, свет лампы и лист бумаги будут восприниматься как белые.
Насыщенность цвета показывает, насколько данный цвет отличается от монохроматического («чистого») излучения того же цветового тона. В компьютерной графике за единицу принимается насыщенность цветов спектральных излучений. Ахроматические цвета (белый, серый, черный) характеризуется только светлотой. Хроматические цвета имеют параметры насыщенности, светлоты и цветового тона.
Способы описания цвета
В компьютерной графике применяют понятие цветового разрешения (другое название — глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно-белого изображения достаточно двух бит (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (такой режим называют High Color). При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов (режим называют True Color).
С практической точки зрения цветовому разрешению монитора близко понятие цветового охвата. Под ним подразумевается диапазон цветов, который можно воспроизвести с помощью того или иного устройства вывода (монитор, принтер, печатная машина и прочие).
Для получения черно-белого изображения (без полутонов) пиксель может принимать только два состояния: светится — не светится (белый — черный). Тогда для его кодирования достаточно одного бита памяти:
1 — белый, 0 — черный.
Пиксель на цветном дисплее может иметь различную окраску. Поэтому одного бита на пиксель — недостаточно.
Для кодирования 4-цветного изображения требуется два бита на пиксель, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов:
— черный 10 — зеленый
— красный 11 — коричневый.
На цветном экране все разнообразие красок получается из сочетаний трех базовых цветов: красного, зеленого, синего. Из трех цветов можно получить восемь комбинаций:
— — — черный к — — красный
— — с синий к — с розовый
— з — зеленый к з — коричневый
— з с голубой к з с белый.
Здесь каждый базовый цвет обозначается первой буквой, а черточкой — отсутствие цвета. Следовательно, для кодирования 8-цветного изображения требуется три бита памяти на один видеопиксель. Если наличие базового цвета обозначить единицей, а отсутствие нулем, то получается следующая таблица кодировки восьмицветной палитры:
-
К
З
С
Цвет
0
0
0
чёрный
0
0
1
Синий
0
1
0
Зелёный
0
1
1
Голубой
1
0
0
Красный
1
0
1
Розовый
1
1
0
Коричневый
1
1
1
белый
Из сказанного, казалось бы, следует вывод: с помощью трех базовых цветов нельзя получить палитру, содержащую больше восьми цветов. Однако на экранах современных компьютеров получают цветные изображения, составленные и; сотен, тысяч и даже миллионов различных красок и оттенков.
Если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, дающих разные краски и оттенки увеличивается.
Шестнадцатицветная палитра получается при использовании четырехразрядной кодировки пикселя: к трем битам базовых цветов добавляется один бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно (интенсивностью трех электронных пучков).
Большее количество цветов получается при раздельном управлении интенсивностью базовых цветов. Причем интенсивность может иметь более двух уровней, если для кодирования каждого из базовых цветов выделять больше одного бита.
Количество различных цветов К и количество битов для кодировки b связаны между собой формулой:
b К = 2
Для получения цветовой гаммы из 256 цветов требуется 8 бит, так как 2 8 = 256.
Объем необходимой видеопамяти определяется размером графической сетки дисплея и количеством цветов. Минимальный объем видеопамяти должен быть таким, чтобы в него помещался один кадр (одна страница) изображения. Например, для сетки 640 х 200 и черно-белого изображения минимальный объем видеопамяти должен быть таким:
640 х 200 х 1 = 128000 бит = 16000 байт.
Это приблизительно 16 Кбайт.
Для четырехцветной гаммы и той же графической сетки видеопамять должна быть в два раза больше — 32 Кбайта; Для восьмицветной — 48 Кбайт.
На современных высококачественных дисплеях используется палитра более чем из 16 миллионов цветов. Требуемый размер видеопамяти в этом случае — несколько мегабайт.
Требуемые объемы для одной страницы различных видеорежимов приведены в таблице 6.4. Если взять удвоенное значение этого объема, то многие адаптеры позволят организовать двухстраничный режим с переключением буферов, что иногда полезно для вывода динамичных изображений.
Трактовка данных видеопамяти зависит от используемого видеорежима. В текстовом режиме каждому знакоместу экрана соответствует слово видеопамяти, расположенное по четному адресу, При этом младший байт слова (байт с четным адресом) содержит ASCII-код символа, а старший байт - его атрибуты. Организация памяти в этом случае является линейной: цепочка слов соответствует собранной в цепь последовательности строк символов. В графическом режиме возможны разнообразные варианты организации видеопамяти.
Таблица 6.4.
Разрешение и требуемый объём видеопамяти
Бит/ пиксель | Количество цветов | 640х480 | 800х600 | 1024х768 | 1280х1024 |
4 | 16 | 150 Кб | 234 Кб | 384 Кб | 640 Кб |
8 | 256 | 300 Кб | 469 Кб | 768 Кб | 1,25 Мб |
15 | 32 768 | 600 Кб | 938 Кб | 1,5 Мб | 2,5 Мб |
16 | 65 536 | 600 Кб | 938 Кб | 1.5 Мб | 2,5 Мб |
24 | 16 777 216 | 900 Кб | 1,37 Мб | 2,25 Мб | 3,75 Мб |
32* | 16 777 216 | 1,172 Мб | 1,83 Мб | 3,0 Мб | 5,0 Мб |
* В режиме с 32 бит/пиксель для цветопередачи используются только 24 младших бита
- Военный университет министерства обороны
- Чешуин с.А.
- Математика и информатика
- Москва – 2004
- Оглавление
- Список сокращений
- Предисловие
- Глава 1. Вводная
- § 1.1. Теоретические основы информатики
- I. Цель, задачи, основные требования к процессу изучения дисциплины «Математика и Информатика»
- II. Предмет и структура информатики.
- § 1.2. Кибернетические аспекты информатики
- I. Информационная деятельность человека (военного специалиста)
- II. Количество и измерение информации
- Заключение
- Контрольные вопросы и задания
- Глава 2. Основные понятия и методы теории информации и кодирования
- § 2. 1. Информация и её свойства
- I. Понятие и классификация информации
- Виды и свойства информации
- III. Общая характеристика процессов сбора, передачи обработки и хранения информации
- § 2.2. Представление информации
- Абстрактный алфавит
- Двоичное кодирование информации
- Кодирование информации различной формы
- § 2.3. Системы счисления используемые в информационных технологиях
- Представление информации в эвм. Системы счисления (сс) и формы представления чисел. Позиционные сс
- Двоичная Арифметика
- Восьмеричная сс
- Методы перевода чисел из одной системы счисления в другую
- Метод перевода целых чисел
- Метод перевода правильных дробей
- IV. Варианты представления информации в эвм (пк)
- Заключение
- Контрольные вопросы и задания
- Глава 3. Математические модели решения информационных и вычислительных задач
- § 3.1. Комплексное аналитическое и имитационное моделирование
- Поэтому в научных и практических исследованиях существуют два направления:
- I. Цель, задачи и основные требования к математическому моделированию информационных процессов
- II. Метод построения комплексных аналитических и имитационных моделей
- III. Сравнительный анализ подходов к математическому описанию информационных процессов
- § 3.2. Математический аппарат теории множеств
- Основные понятия теории множеств. Операции над множествами
- Операции булевой алгебры
- Основные термины математической логики
- Операции булевой алгебры
- 1. Логическое сложение (дизъюнкция, или)
- 2. Логическое умножение (конъюнкция, и)
- 3. Логическое отрицание (инверсия, не)
- Поглощения
- Алгебра высказываний, исчисление высказываний
- 1. Доказать табличным способом соотношения
- Логический вывод
- Продукционное правило
- Декларативное правило
- § 3.3. Математический аппарат теории графов
- Понятие графа
- Правила нумерации событий в сетевом графе методов вычёркивания дуг:
- Отношения и графы, Свойства и типы однородных отношений
- Перечень мероприятий:
- Синтез эталонного графа:
- Оптимизация эталонного графа
- Синтез текущего граф
- Сравнение текущего графа с эталонным
- Вывод-распознавание объекта.
- § 3.4. Математический аппарат теории вероятности и прикладной статистики
- Основные понятия теории вероятности и прикладной статистики
- Основные направления исследования
- Случайные события
- 1. Основные понятия комбинаторики
- 2. Пространство элементарных событий
- 3. Классификация случайный событий
- Случайные величины
- 4. Дискретная случайная величина
- 5. Функция распределения случайной величины и её свойства
- 6. Непрерывная случайная величина
- 7. Числовые характеристики случайной величины
- II. Табличное представление экспертных данных. Числовые характеристики выборки, упрощенные методы вычисления характеристик Предмет и основные задачи математической статистики
- Генеральная и выборочная совокупности
- Упрощённые методы вычисления характеристик
- Статистический подход к определению вероятности. Вычисление вероятностей сложных событий. Условные вероятности. Формула Байеса
- 1. Определение вероятностей случайных событий
- 2. Определение вероятностей совместных событий
- 3. Определение условной вероятности
- 4. Теорема о полной вероятности
- 5. Формула Байеса
- 6. Формула Бернулли
- Формула Бернулли
- § 3.5. Математический аппарат регрессионного и корреляционного анализа
- Корреляционный анализ. Коэффициент корреляции и его оценка
- Регрессионный анализ. Простая и линейная регрессия
- Ранговые корреляционные статистики. Устойчивость оценки
- Построим график полученной прямой на поле корреляции по двум точкам
- Заключение
- Контрольные вопросы и задания
- Глава 4. Архитектура персонального компьютера
- § 4. 1. Информационно-логические основы построения электронно-вычислительных машин
- I. Структурная схема канонической эвм
- II. Принципы программного управления.
- Структура и виды команд
- Состав машинных команд
- III. Классификации компьютеров
- По способу организации обмена информацией
- 2. По назначению:
- 3. По назначению, размерам и функциональным возможностям:
- На базе большой эвм
- Другие виды классификации компьютеров
- 4. Классификация по уровню специализации.
- 5. Классификация по типоразмерам.
- 6. Классификация по совместимости.
- 7. Классификация по типу используемого процессора.
- История развития Электронно-вычислительных машин
- 8. По элементной базе, использованной при создании эвм. Исторический аспект (поколения развития техники и технологии микропроцессоров)
- § 4.2. Функционально – структурная организация пэвм
- I. Структура пэвм и назначение устройств
- Основные блоки персонального компьютера и их назначение
- Элементы конструкции пк
- Системный блок
- Монитор
- Электронно-лучевые мониторы
- Жидкокристаллические мониторы (дисплеи)
- Клавиатура
- Видеокарта (видеоадаптер)
- Звуковая карта
- Системы, расположенные на материнской плате Оперативная память
- Процессор
- Микросхема пзу и система bios
- Энергонезависимая память cmos
- Функции микропроцессорного комплекта (чипсета)
- II. Функциональные характеристики пэвм
- III. Внутримашинный системный интерфейс
- Шины расширений
- Локальные шины
- § 4.3. Микропроцессоры и запоминающие устройства
- Типы, структура и порядок работы микропроцессора История развития микропроцессоров
- Типы, структура и порядок работы микропроцессора
- Типы микропроцессоров
- Порядок работы основных устройств микропроцессора
- Устройство управления
- Шина адреса
- Арифметико-логическое устройство
- Кодовая шина данных Кодовая шина инструкций
- Микропроцессорная память
- Интерфейсная часть микропроцессора
- Последовательность работы блоков персонального компьютера при выполнении команды
- Основная, внешняя и кэш – память Запоминающие устройства персонального компьютера
- Основная (внутренняя )память Физическая структура основной памяти
- Логическая структура основной памяти
- Отображаемая
- Внешняя память
- Логическая структура диска
- Накопители на жестких магнитных дисках
- Дисковые массивы raid
- Накопители на гибких магнитных дисках
- Накопители на оптических дисках (компакт-дисках) cd-rom
- Накопители на магнитной ленте
- Сравнительные характеристики запоминающих устройств
- Другие устройства хранения данных
- § 4.4. Внешние (периферийные) устройства персонального компьютера
- Устройства ввода информации Устройства командного управления
- Клавиатура
- Устройства ввода графических данных
- II. Устройства вывода информации Видеотерминальные устройства
- Разрешающая способность мониторов
- Монохромные мониторы
- Видеоконтроллеры
- Принтеры
- Матричные принтеры
- Струйные принтеры
- Лазерные принтеры
- III. Мультимедийные устройства
- Средства связи и телекоммуникаций
- Заключение
- Глава 5. Системное программное обеспечение пэвм
- § 5.1. Программное обеспечение пэвм
- I. Системное и прикладное программное обеспечение Системное программное обеспечение пэвм
- Прикладное программное обеспечение
- II. Назначение структура и порядок загрузки операционных систем. Файловая система Понятие и классификация операционных систем
- Семейства Операционных систем
- Назначение и структура ms dos
- Файловые системы
- Команды операционной системы ms dos
- Основные команды dos. Общие сведения о программах – оболочках Способы обращения к файлам в ос ms dos
- Основные команды dos
- 1) Смена текущего логического диска
- 2) Просмотр содержимого каталога
- 3) Создание каталогов
- 4) Удаление каталога
- 5) Копирование файлов
- 6) Просмотр содержимого файла
- 7) Удаление файлов
- 8) Переименование файлов (перемещение)
- 9) Форматирование диска
- Конфигурирование операционной системы ms dos
- Общие сведения о программах – оболочках
- Назначение, основные возможности и интерфейс операционной оболочки Norton Commander
- Основные методы работы с Norton Commander. Управление режимами отображения информации в панелях nc
- Работа с каталогами и файлами
- Работа с дисками
- Форматирование дискеты
- Копирование дискет
- Очистка дисков от лишней информации
- § 5.2. Операционные системы семейства Windows. Сервисное программное обеспечение
- Концепция Windows. Элементы пользовательского интерфейса. Особенности различных версий Общая характеристика операционной среды Windows
- Архитектура операционной среды Windows
- Операционная система Windows 98
- Операционная система Windows 2000
- Интерфейс пользователя
- Рабочий стол Windows
- Структура окна
- Операции с файловой структурой
- Работа с программой Проводник
- Настройка системы Windows
- Завершение работы
- Стандартные программы Windows
- Графический редактор Paint
- Текстовый редактор WordPad
- Калькулятор
- Сервисное программное обеспечение: резервирование информации, антивирусные средства, обслуживание дисков, ограничение доступа к информации
- Служебные программы
- Защита и резервирование информации
- Резервирование информации
- Компьютерные вирусы и антивирусные средства
- Защита от компьютерных вирусов
- Заключение
- Контрольные вопросы и задания
- Глава 6. Компьютерная обработка текстовой и графической информации
- § 6.1. Программное обеспечение «Microsoft office». Создание и обработка текстовых документов и электронных таблиц
- Цели, состав, решаемые задачи при помощи программного обеспечения «Microsoft office»
- Интерфейс текстового процессора. Основные технологические операции
- Основные версии текстового процессора Microsoft Word
- Рабочее окно процессора Microsoft Word 2000
- Приемы работы с командами строки меню
- Панели инструментов Microsoft Word 2000
- Основные принципы практической работы с текстовым процессором Microsoft Word
- Основные элементы текстового документа
- Связывание и встраивание объектов
- Интерфейс табличного процессора. Основные технологические операции
- Вычисления в электронных таблицах
- Применение электронных таблиц для расчетов
- Использование надстроек
- Построение диаграмм и графиков
- Заключение
- Контрольные вопросы и задания
- § 6.2. Концепции баз данных
- Назначение и компоненты баз данных
- Структура простейшей базы данных
- Свойства полей базы данных
- Типы данных
- Безопасность баз данных
- Этапы проектирования баз данных
- Характеристика субд Microsoft Access 2000
- Создание межтабличных связей
- Заключение
- Контрольные вопросы и задания
- § 6.3. Компьютерная графика
- Принципы формирования изображений
- Существует два принципа представления изображений:
- Растровая графика
- 2. Векторная графика
- Форматы графических данных
- Векторная и растровая графика
- Программное обеспечение компьютерной графики
- Рабочий стол Photoshop
- Окно изображения
- Строка состояния
- Панель инструментов
- Группа инструментов для работы с выделениями
- Инструменты «Рисование и редактирование»
- Инструменты наведения
- Управление цветами переднего и заднего планов
- Плавающие палитры
- Команды панели меню
- Команды настройки
- Фильтры
- Контуры
- Изменение цвета в изображении
- Запись операций
- Заключение
- Контрольные вопросы и задания
- Глава 7. Компьютерная обработка аудиоинформации
- § 7.1. Программное обеспечение компьютерной обработки аудиоинформации
- Направление движения предмета
- Назначение, состав и возможности программного обеспечения «СаkеWalk», «Sound Forge» и «Cool Edit»
- Волны находятся в фазе Волны в четверть фазы Волны в противофазе
- Уровень и громкость звука
- Тембр звука
- Стоячие волны и резонанс
- Форматы midi и wave
- § 7.2. Основы режиссуры
- Запись и обработка звука
- Способы хранения и сжатия звука
- Восстановление сигнала из цифрового вида в аналоговый
- Понятие «Sample» и семплирование
- Основные функции сэмплеров. Звуковая петля
- Основы режиссуры
- § 7.3. Работа с программным обеспечением «Cool Edit» Выбор рабочего формата
- Настройка редактора
- Окно редактирования сэмплов
- Запись и обработка звука в многоканальном звуковом файле
- Сведение звуковых дорожек в стереофайл Окно редактирования дорожек
- Заключение
- Контрольные вопросы и задания
- Глава 8. Компьютерная обработка видеоинформации
- § 8.1. Программное обеспечение компьютерной обработки видеоинформации
- Назначение, состав и возможности по « Adobe Premier»
- Конфигурация системы видеомонтажа
- Запись, экспорт, импорт видеофайлов, их компьютерная обработка
- Действия по оцифровке видеофайлов
- § 8.2. Основы видеорежиссуры
- Видеомонтаж
- Работа с окном Project
- Работа с окнами TimeLine и Monitor
- Переходы и Видеоэффекты
- Оцифровка видеофайлов и экспорт видеопрограмм
- Создание готового продукта
- Заключение
- Контрольные вопросы
- Глава 9. Информационные системы и компьютерные сети
- § 9.1. Информационные системы
- Основные понятия общей теории систем. Сущность системного подхода
- Сущность и принципы системного подхода
- Системный анализ предметной области: описание системы, выявление проблемы, выбор варианта решения
- Методика проведения системного анализа
- Основные понятия теории эффективности
- Основные понятия, виды обеспечения информационных систем. Технология «Клиент - Сервер»
- § 9.2. Основы построения и архитектура компьютерных сетей (кс)
- Назначение, классификация кс. Характеристика процесса передачи данных
- Характеристика процесса передачи данных.
- Эталонные модели взаимодействия систем. Протоколы кс
- Передающая среда
- Особенности организации локальных вычислительных сетей (лвс). Типовые технологии и методы доступа. Безопасность информации
- § 9.3. Работа компьютерной сети
- Организация доступа в сеть
- Глобальная сеть «Интернет» и её службы
- Службы Интернета
- Электронная почта (e-Mail)
- Способы организации передачи данных
- Заключение
- Контрольные вопросы и задания.
- Словарь терминов
- Литература