Типы, структура и порядок работы микропроцессора История развития микропроцессоров
Первый микропроцессор был выпущен в 1971 г. фирмой Intel (США) - i4004. Он имел разрядность данных 4 бита, способность адресовать 640 байт памяти, тактовую частоту 108 КГц и производительность 0,06 MIPS. Такой процессор уже мог работать в качестве вычислительного ядра калькулятора. Он содержал 2300 транзисторов и выполнялся по технологии с разрешением 10 мкм. Через год появился его 8-битный «родственник» - i8008, адресующий уже 16 Кбайт памяти. В 1974 году появился 8-разрядный процессор 18080, ставший весьма популярным устройством. Он уже имел частоту 2 МГц и адресовал 64 Кбайт памяти. 6000 транзисторов позволила разместить 6-мкм технология изготовления. Процессор требовал трёх источников питания (+5,+12,-5В) и сложной двухтактной синхронизации. На этом процессоре строились разнообразные терминалы, контроллеры и даже первый ПК Altair. В нашей стране запоздалым эхом 8080 стали процессоры 580ИК80 и КР580ВМ80, на базе которых в начале и середине 80-х годов строилось много «самодельных» ПК.
Следующим этапом стал процессор 18085 (5МГц, 0,37 MIPS, 6500 транзисторов, 3-мкм технология). Он сохранил популярную регистровую архитектуру 8080 и программную совместимость, но в него добавили порт последовательного интерфейса, упразднили специальные ИС поддержки (тактового генератора и системного контроллера) и несколько изменили внешний интерфейс. Очень важной особенностью для разработчиков стало только одно питающее напряжение +5 В.
Вариацию на тему 8080 и 8085 представляет процессор Z80 фирмы Zilog. Сохранив программную совместимость с 8080, в него ввели -дополнительные регистры. Результат оказался впечатляющим - еще недавно популярные компьютеры Sinclair, построенные на Z80, демонстрировали на играх графику, не уступающую ПК на 16-разрядном процессоре 286.
Первый 16-разрядный процессор 8086 фирма Intel выпустила в 1978 году. Частота 5 МГц, производительность 0,33 MIPS, но инструкции уже с 16-битными операндами (позже появились процессоры 8 и 10 МГц). Технология 3 мкм, 29 тыс. транзисторов. Адресуемая память 1 Мб. Регистровая архитектура и система команд существенно отличалась от 080, но прослеживались общие идеи. Через год появился 8088 - тот же процессор, но с 8-биткой шиной данных. С него началась история IBM PC, наложившая свой отпечаток на дальнейшее развитие этой линии процессоров Intel. Массовое распространение и открытость архитектуры PC привели к лавинообразному появлению программного обеспечения, разрабатываемого крупными, средними фирмами и энтузиастами - одиночками. Технический прогресс требовал и требует развития процессоров, груз программного обеспечения PC, которое должно работать и на более новых процессорах, в свою очередь требовал обеспечения обратной программной совместимости. Таким образом, все нововведения в архитектуре последующих процессоров должны были пристраиваться к существующему ядру.
Процессор 80286, знаменитый следующий этап архитектуры, появился только в 1982 году. Он уже имел 134 тыс. транзисторов (технология 1,5 мкм) и адресовал до 16 Мбайт физической памяти. Его принципиальные новшества - защищённый режим и виртуальная память размеров до 1 Гб - не нашли массового применения, процессор большей частью использовался как очень быстрый 8088.
Класс 32-разрядных процессоров был открыт в 1985 году моделью 80386 (275 тыс. транзисторов, 1,5мкм). Разрядность шины данных (как и внутренних регистров) достигла 32 бит, адресуемая физическая память - 4 Гбайт. Появились новые регистры, новые 32-битные операции, существенно доработан защищённый режим, появилось страничное управление памятью. Процессор нашёл широкое применение в PC, и на благодатной почве его новых свойств стал разрастаться «самый большой вирус» - MS Windows с приложениями. С этого времени стала заметна тенденция «положительной обратной связи»: на появление нового процессора производители ПО реагируют выпуском новых программных продуктов, последующим версиям которых становится явно тесно в рамках этого процессора. Появляется более производительный процессор, но после непродолжительного восторга и его ресурсы «съедают» и т.д. Это «вечное движение», конечно, естественно, но есть обоснованное подозрение, что большие ресурсы расслабляют разработчиков программного обеспечения, не принуждая его напрягаться в поисках более эффективных способов решения задачи. Примером эффективного программирования можно считать игрушки на Sinclair ZX-Spectrum, которые реализуются на «игрушечных» ресурсах - 8-битовом процессоре и 64 (128) Кбайт ОЗУ. С противоположными примерами большинство пользователей сталкиваются регулярно.
История процессора 386 напоминает историю 8086: первую модель с 2-битной шиной данных (впоследствии названной 386DX) сменил 386SX с 16-битной шиной. Он довольно легко вписывался в архитектуру PC AT, ранее базировавшуюся на процессоре 286.
Процессор Intel 486 DX появился в 1989 году. Транзисторов - 1,2 млн., технология 1 мкм. От 386-го существенно отличается размещением на кристалле первичного КЭШа и встроенного математического сопроцессора (предыдущие процессоры имели возможность использования внешних х87 сопроцессоров). Кроме того, для повышения производительности в этом CISC-процессоре (как и в последующих) применено RISC-ядро. Далее появились его разновидности, сличающиеся наличием или отсутствием сопроцессора, применением внутреннего умножения частоты, политикой записи КЭШа и другими. Занялись энергосбережением (появился режим SMM), что отразилось и в продолжении линии 386 процессоров (появился процессор 386SL).
В 1993 году появились первые процессоры Pentium с частотой 60 и 66 МГц - 32-разряные процессоры с 64-битной шиной данных. Транзисторов 3,1 млн., технология 0,8 мкм, питание 5 В. От 486 принципиально отличается суперскалярной архитектурой - способностью за один такт выпускать с конвейеров до двух инструкций (что, конечно, не означает возможности прохождения инструкции через процессор за пол такта или один такт). Интерес к процессору со стороны производителей и покупателей сдерживался его очень высокой ценой. Кроме того, возник скандал с обнаруженной ошибкой сопроцессора. Хотя фирма Intel математически обосновала невысокую вероятность её проявления, она всё-таки пошла на бесплатную замену уже проданных процессоров на исправленные.
Процессоры Pentium с частотой 75,9 и 100 МГц, появившиеся в 1994году, представили уже второе поколение этих процессоров. При почти том же числе транзисторов они выполнялись по технологии 0,6 мкм, что позволило снизить потребляемую мощность. От первого поколения они отличались внутренним умножением частоты, поддержкой мультипроцессорных конфигураций и имели другой тип корпуса. Появились версии (75 МГц в миниатюрном корпусе) для мобильных применений (блокнотных ПК). Процессоры Pentium второго поколения стали весьма популярными. В 1995 году появились процессоры на 120 и 133 МГц, выполненные уже по технологии 0,6 мкм. 1996-й называют годом Pentium - появились процессоры на 150, 166, 200 МГц Pentium стал рядовым процессором для ПК широкого применения.
Параллельно с Pentium развивался и процессор Pentium Pro, который отличался новшествами «динамического исполнения инструкций», направленными на увеличение числа параллельно исполняемых инструкций. Кроме того, в его корпусе разместили и вторичный кэш, для начала объёмом 256 кбайт. Однако на 16-битных приложениях, а также в среде Windows 95 его применение не даёт преимуществ. Процессор содержит 5,5 млн. транзисторов ядра и 15,5 млн. транзисторов для вторичного КЭШа. Первый процессор с частотой 150 МГц появился в начале 1995 года (технология 0,6мкм), а уже в конце года появились процессоры с частотой 166, 180, 200 МГц (технология 0,35 мкм), у которых кэш достигал и 512 Кбайт.
Вначале 1997 года появились процессоры Pentium MMX. Расширение ММХ предполагает параллельную обработку группы операндов одной инструкцией. Технология ММХ призвана ускорять выполнение мультимедийных приложений, в частности операции с изображениями и обработку сигналов. Её эффективность вызывает споры в среде разработчиков, поскольку выигрыш в самих операциях обработки компенсируется проигрышем на дополнительных операциях упаковки-распаковки. Эти процессоры по сравнению с обычным Pentium имеют удвоенный объём первичного КЭШа и некоторые элементы архитектуры, позаимствованные у Pentium Pro, что повышает производительность Pentium ММХ и на обычных приложениях. Такие процессоры имеют 4,5 млн. транзисторов и выполнены по технологии 0,35 мкм. Тактовая частота 166,200,233 МГц.
В результате объединения технологии ММХ с архитектурой Pentium Pro в мае 1997 года появился процессор Pentium II. Новшества в основном определяются более высокой миниатюризацией, поддержкой ММХ, более высокой тактовой частотой ядра (233, 266, 300 МГц), размещением кэш второго уровня в виде отдельного картриджа.
Последним представителем семейства процессоров Intel является Pentium III, 4 характеризующиеся ещё более высокой тактовой частотой и рядом других доработок. Pentium III — новейший микропроцессор Intel, анонсированный в 1999 году. Обладает дополнительной системой команд SSE, оптимизированной для работы с мультимедиа. Pentium 4 — первый процессор Intel седьмого поколения (кодовое название Willamette), созданный на базе новой 32-разрядной микроархитектуры. Этот процессор характеризуется суперскалярной технологией, быстродействующим ассоциативным КЭШем и системной шиной с частотой 400 МГц. Благодаря четырехкратной передаче данных по одному каналу системная шина позволяет достичь скорости передачи данных 3,2 Гбайт/с. Процессор содержит расширенный передаточный кэш объемом 256 Кбайт и встроенную кэш-память второго уровня, имеющую более высокую по сравнению с предыдущей микроархитектурой пропускную способность. Использование 128-разрядных регистров и дополнительного регистра для перемещения данных позволило улучшить модули, осуществляющие операции с плавающей запятой. Кроме того, поддерживается технология SSE2, содержащая 144 новых команды для выполнения операций с удвоенной точностью над целыми числами и числами с плавающей запятой, а также для управления памятью.
Перечисленными моделями не исчерпывается весь мировой ассортимент микропроцессоров. Ряд фирм (DEC, Motorola, Texas Instruments и другие) имеют разработки, существенно отличающиеся от данного семейства. Есть другие процессоры и у Intel. Однако применение- перечисленных процессоров в персональных компьютерах обусловило их широкое распространение.
Процессоры, совместимые с семейством х86, выпускаются не только фирмой Intel. Традиционный конкурент - AMD - выпускает совместимые процессоры обычно несколько позже, но заметно дешевле, иногда по ряду технических свойств они даже опережают аналогичные процессоры Intel. Фирма Cyrix славится своими быстрыми сопроцессорами. Однако для процессоров, предназначенных для применения в ПК, все они в той или иной степени стремятся к совместимости с изделиями Intel.
- Военный университет министерства обороны
- Чешуин с.А.
- Математика и информатика
- Москва – 2004
- Оглавление
- Список сокращений
- Предисловие
- Глава 1. Вводная
- § 1.1. Теоретические основы информатики
- I. Цель, задачи, основные требования к процессу изучения дисциплины «Математика и Информатика»
- II. Предмет и структура информатики.
- § 1.2. Кибернетические аспекты информатики
- I. Информационная деятельность человека (военного специалиста)
- II. Количество и измерение информации
- Заключение
- Контрольные вопросы и задания
- Глава 2. Основные понятия и методы теории информации и кодирования
- § 2. 1. Информация и её свойства
- I. Понятие и классификация информации
- Виды и свойства информации
- III. Общая характеристика процессов сбора, передачи обработки и хранения информации
- § 2.2. Представление информации
- Абстрактный алфавит
- Двоичное кодирование информации
- Кодирование информации различной формы
- § 2.3. Системы счисления используемые в информационных технологиях
- Представление информации в эвм. Системы счисления (сс) и формы представления чисел. Позиционные сс
- Двоичная Арифметика
- Восьмеричная сс
- Методы перевода чисел из одной системы счисления в другую
- Метод перевода целых чисел
- Метод перевода правильных дробей
- IV. Варианты представления информации в эвм (пк)
- Заключение
- Контрольные вопросы и задания
- Глава 3. Математические модели решения информационных и вычислительных задач
- § 3.1. Комплексное аналитическое и имитационное моделирование
- Поэтому в научных и практических исследованиях существуют два направления:
- I. Цель, задачи и основные требования к математическому моделированию информационных процессов
- II. Метод построения комплексных аналитических и имитационных моделей
- III. Сравнительный анализ подходов к математическому описанию информационных процессов
- § 3.2. Математический аппарат теории множеств
- Основные понятия теории множеств. Операции над множествами
- Операции булевой алгебры
- Основные термины математической логики
- Операции булевой алгебры
- 1. Логическое сложение (дизъюнкция, или)
- 2. Логическое умножение (конъюнкция, и)
- 3. Логическое отрицание (инверсия, не)
- Поглощения
- Алгебра высказываний, исчисление высказываний
- 1. Доказать табличным способом соотношения
- Логический вывод
- Продукционное правило
- Декларативное правило
- § 3.3. Математический аппарат теории графов
- Понятие графа
- Правила нумерации событий в сетевом графе методов вычёркивания дуг:
- Отношения и графы, Свойства и типы однородных отношений
- Перечень мероприятий:
- Синтез эталонного графа:
- Оптимизация эталонного графа
- Синтез текущего граф
- Сравнение текущего графа с эталонным
- Вывод-распознавание объекта.
- § 3.4. Математический аппарат теории вероятности и прикладной статистики
- Основные понятия теории вероятности и прикладной статистики
- Основные направления исследования
- Случайные события
- 1. Основные понятия комбинаторики
- 2. Пространство элементарных событий
- 3. Классификация случайный событий
- Случайные величины
- 4. Дискретная случайная величина
- 5. Функция распределения случайной величины и её свойства
- 6. Непрерывная случайная величина
- 7. Числовые характеристики случайной величины
- II. Табличное представление экспертных данных. Числовые характеристики выборки, упрощенные методы вычисления характеристик Предмет и основные задачи математической статистики
- Генеральная и выборочная совокупности
- Упрощённые методы вычисления характеристик
- Статистический подход к определению вероятности. Вычисление вероятностей сложных событий. Условные вероятности. Формула Байеса
- 1. Определение вероятностей случайных событий
- 2. Определение вероятностей совместных событий
- 3. Определение условной вероятности
- 4. Теорема о полной вероятности
- 5. Формула Байеса
- 6. Формула Бернулли
- Формула Бернулли
- § 3.5. Математический аппарат регрессионного и корреляционного анализа
- Корреляционный анализ. Коэффициент корреляции и его оценка
- Регрессионный анализ. Простая и линейная регрессия
- Ранговые корреляционные статистики. Устойчивость оценки
- Построим график полученной прямой на поле корреляции по двум точкам
- Заключение
- Контрольные вопросы и задания
- Глава 4. Архитектура персонального компьютера
- § 4. 1. Информационно-логические основы построения электронно-вычислительных машин
- I. Структурная схема канонической эвм
- II. Принципы программного управления.
- Структура и виды команд
- Состав машинных команд
- III. Классификации компьютеров
- По способу организации обмена информацией
- 2. По назначению:
- 3. По назначению, размерам и функциональным возможностям:
- На базе большой эвм
- Другие виды классификации компьютеров
- 4. Классификация по уровню специализации.
- 5. Классификация по типоразмерам.
- 6. Классификация по совместимости.
- 7. Классификация по типу используемого процессора.
- История развития Электронно-вычислительных машин
- 8. По элементной базе, использованной при создании эвм. Исторический аспект (поколения развития техники и технологии микропроцессоров)
- § 4.2. Функционально – структурная организация пэвм
- I. Структура пэвм и назначение устройств
- Основные блоки персонального компьютера и их назначение
- Элементы конструкции пк
- Системный блок
- Монитор
- Электронно-лучевые мониторы
- Жидкокристаллические мониторы (дисплеи)
- Клавиатура
- Видеокарта (видеоадаптер)
- Звуковая карта
- Системы, расположенные на материнской плате Оперативная память
- Процессор
- Микросхема пзу и система bios
- Энергонезависимая память cmos
- Функции микропроцессорного комплекта (чипсета)
- II. Функциональные характеристики пэвм
- III. Внутримашинный системный интерфейс
- Шины расширений
- Локальные шины
- § 4.3. Микропроцессоры и запоминающие устройства
- Типы, структура и порядок работы микропроцессора История развития микропроцессоров
- Типы, структура и порядок работы микропроцессора
- Типы микропроцессоров
- Порядок работы основных устройств микропроцессора
- Устройство управления
- Шина адреса
- Арифметико-логическое устройство
- Кодовая шина данных Кодовая шина инструкций
- Микропроцессорная память
- Интерфейсная часть микропроцессора
- Последовательность работы блоков персонального компьютера при выполнении команды
- Основная, внешняя и кэш – память Запоминающие устройства персонального компьютера
- Основная (внутренняя )память Физическая структура основной памяти
- Логическая структура основной памяти
- Отображаемая
- Внешняя память
- Логическая структура диска
- Накопители на жестких магнитных дисках
- Дисковые массивы raid
- Накопители на гибких магнитных дисках
- Накопители на оптических дисках (компакт-дисках) cd-rom
- Накопители на магнитной ленте
- Сравнительные характеристики запоминающих устройств
- Другие устройства хранения данных
- § 4.4. Внешние (периферийные) устройства персонального компьютера
- Устройства ввода информации Устройства командного управления
- Клавиатура
- Устройства ввода графических данных
- II. Устройства вывода информации Видеотерминальные устройства
- Разрешающая способность мониторов
- Монохромные мониторы
- Видеоконтроллеры
- Принтеры
- Матричные принтеры
- Струйные принтеры
- Лазерные принтеры
- III. Мультимедийные устройства
- Средства связи и телекоммуникаций
- Заключение
- Глава 5. Системное программное обеспечение пэвм
- § 5.1. Программное обеспечение пэвм
- I. Системное и прикладное программное обеспечение Системное программное обеспечение пэвм
- Прикладное программное обеспечение
- II. Назначение структура и порядок загрузки операционных систем. Файловая система Понятие и классификация операционных систем
- Семейства Операционных систем
- Назначение и структура ms dos
- Файловые системы
- Команды операционной системы ms dos
- Основные команды dos. Общие сведения о программах – оболочках Способы обращения к файлам в ос ms dos
- Основные команды dos
- 1) Смена текущего логического диска
- 2) Просмотр содержимого каталога
- 3) Создание каталогов
- 4) Удаление каталога
- 5) Копирование файлов
- 6) Просмотр содержимого файла
- 7) Удаление файлов
- 8) Переименование файлов (перемещение)
- 9) Форматирование диска
- Конфигурирование операционной системы ms dos
- Общие сведения о программах – оболочках
- Назначение, основные возможности и интерфейс операционной оболочки Norton Commander
- Основные методы работы с Norton Commander. Управление режимами отображения информации в панелях nc
- Работа с каталогами и файлами
- Работа с дисками
- Форматирование дискеты
- Копирование дискет
- Очистка дисков от лишней информации
- § 5.2. Операционные системы семейства Windows. Сервисное программное обеспечение
- Концепция Windows. Элементы пользовательского интерфейса. Особенности различных версий Общая характеристика операционной среды Windows
- Архитектура операционной среды Windows
- Операционная система Windows 98
- Операционная система Windows 2000
- Интерфейс пользователя
- Рабочий стол Windows
- Структура окна
- Операции с файловой структурой
- Работа с программой Проводник
- Настройка системы Windows
- Завершение работы
- Стандартные программы Windows
- Графический редактор Paint
- Текстовый редактор WordPad
- Калькулятор
- Сервисное программное обеспечение: резервирование информации, антивирусные средства, обслуживание дисков, ограничение доступа к информации
- Служебные программы
- Защита и резервирование информации
- Резервирование информации
- Компьютерные вирусы и антивирусные средства
- Защита от компьютерных вирусов
- Заключение
- Контрольные вопросы и задания
- Глава 6. Компьютерная обработка текстовой и графической информации
- § 6.1. Программное обеспечение «Microsoft office». Создание и обработка текстовых документов и электронных таблиц
- Цели, состав, решаемые задачи при помощи программного обеспечения «Microsoft office»
- Интерфейс текстового процессора. Основные технологические операции
- Основные версии текстового процессора Microsoft Word
- Рабочее окно процессора Microsoft Word 2000
- Приемы работы с командами строки меню
- Панели инструментов Microsoft Word 2000
- Основные принципы практической работы с текстовым процессором Microsoft Word
- Основные элементы текстового документа
- Связывание и встраивание объектов
- Интерфейс табличного процессора. Основные технологические операции
- Вычисления в электронных таблицах
- Применение электронных таблиц для расчетов
- Использование надстроек
- Построение диаграмм и графиков
- Заключение
- Контрольные вопросы и задания
- § 6.2. Концепции баз данных
- Назначение и компоненты баз данных
- Структура простейшей базы данных
- Свойства полей базы данных
- Типы данных
- Безопасность баз данных
- Этапы проектирования баз данных
- Характеристика субд Microsoft Access 2000
- Создание межтабличных связей
- Заключение
- Контрольные вопросы и задания
- § 6.3. Компьютерная графика
- Принципы формирования изображений
- Существует два принципа представления изображений:
- Растровая графика
- 2. Векторная графика
- Форматы графических данных
- Векторная и растровая графика
- Программное обеспечение компьютерной графики
- Рабочий стол Photoshop
- Окно изображения
- Строка состояния
- Панель инструментов
- Группа инструментов для работы с выделениями
- Инструменты «Рисование и редактирование»
- Инструменты наведения
- Управление цветами переднего и заднего планов
- Плавающие палитры
- Команды панели меню
- Команды настройки
- Фильтры
- Контуры
- Изменение цвета в изображении
- Запись операций
- Заключение
- Контрольные вопросы и задания
- Глава 7. Компьютерная обработка аудиоинформации
- § 7.1. Программное обеспечение компьютерной обработки аудиоинформации
- Направление движения предмета
- Назначение, состав и возможности программного обеспечения «СаkеWalk», «Sound Forge» и «Cool Edit»
- Волны находятся в фазе Волны в четверть фазы Волны в противофазе
- Уровень и громкость звука
- Тембр звука
- Стоячие волны и резонанс
- Форматы midi и wave
- § 7.2. Основы режиссуры
- Запись и обработка звука
- Способы хранения и сжатия звука
- Восстановление сигнала из цифрового вида в аналоговый
- Понятие «Sample» и семплирование
- Основные функции сэмплеров. Звуковая петля
- Основы режиссуры
- § 7.3. Работа с программным обеспечением «Cool Edit» Выбор рабочего формата
- Настройка редактора
- Окно редактирования сэмплов
- Запись и обработка звука в многоканальном звуковом файле
- Сведение звуковых дорожек в стереофайл Окно редактирования дорожек
- Заключение
- Контрольные вопросы и задания
- Глава 8. Компьютерная обработка видеоинформации
- § 8.1. Программное обеспечение компьютерной обработки видеоинформации
- Назначение, состав и возможности по « Adobe Premier»
- Конфигурация системы видеомонтажа
- Запись, экспорт, импорт видеофайлов, их компьютерная обработка
- Действия по оцифровке видеофайлов
- § 8.2. Основы видеорежиссуры
- Видеомонтаж
- Работа с окном Project
- Работа с окнами TimeLine и Monitor
- Переходы и Видеоэффекты
- Оцифровка видеофайлов и экспорт видеопрограмм
- Создание готового продукта
- Заключение
- Контрольные вопросы
- Глава 9. Информационные системы и компьютерные сети
- § 9.1. Информационные системы
- Основные понятия общей теории систем. Сущность системного подхода
- Сущность и принципы системного подхода
- Системный анализ предметной области: описание системы, выявление проблемы, выбор варианта решения
- Методика проведения системного анализа
- Основные понятия теории эффективности
- Основные понятия, виды обеспечения информационных систем. Технология «Клиент - Сервер»
- § 9.2. Основы построения и архитектура компьютерных сетей (кс)
- Назначение, классификация кс. Характеристика процесса передачи данных
- Характеристика процесса передачи данных.
- Эталонные модели взаимодействия систем. Протоколы кс
- Передающая среда
- Особенности организации локальных вычислительных сетей (лвс). Типовые технологии и методы доступа. Безопасность информации
- § 9.3. Работа компьютерной сети
- Организация доступа в сеть
- Глобальная сеть «Интернет» и её службы
- Службы Интернета
- Электронная почта (e-Mail)
- Способы организации передачи данных
- Заключение
- Контрольные вопросы и задания.
- Словарь терминов
- Литература