Поиск в глубину
Поиск в глубину является обобщением метода обхода дерева в прямом порядке (см. п. 2.3.4.2).
Предположим, что есть ориентированный граф G, в котором первоначально все вершины помечены как непосещенные. Поиск в глубину начинается с выбора начальной вершины v графа G, и эта вершина помечается как посещенная. Затем для каждой вершины, смежной с вершиной v и которая не посещалась ранее, рекурсивно применяется поиск в глубину. Когда все вершины, которые можно достичь из вершины v, будут «удостоены» посещения, поиск заканчивается. Если некоторые вершины остались не посещенными, то выбирается одна из них и поиск повторяется. Этот процесс продолжается до тех пор, пока обходом не будут охвачены все вершины орграфа G.
Этот метод обхода вершин орграфа называется поиском в глубину, поскольку поиск непосещенных вершин идет в направлении вперед (вглубь) до тех пор, пока это возможно. Например, пусть x — последняя посещенная вершина. Для продолжения процесса выбирается какая-либо нерассмотренная дуга x y, выходящая из вершины x. Если вершина y уже посещалась, то ищется другая вершина, смежная с вершиной x. Если вершина y ранее не посещалась, то она помечается как посещенная и поиск начинается заново от вершины y. Пройдя все пути, которые начинаются в вершине y, возвращаемся в вершину x, то есть в ту вершину, из которой впервые была достигнута вершина y. Затем продолжается выбор нерассмотренных дуг, исходящих из вершины x, и так до тех пор, пока не будут исчерпаны все эти дуги.
Для представления вершин, смежных с вершиной v, можно использовать список смежных (см. п. 2.3.3.2), а для определения вершин, которые ранее посещались, — массив Visited:
Graph: TAdjacencyList;
Visited: array[1..n] of boolean;
Чтобы применить эту процедуру к графу, состоящему из n вершин, надо сначала присвоить всем элементам массива Visited значение false, затем начать поиск в глубину для каждой вершины, помеченной как false.
procedure DepthSearch(v: integer);
begin
Visited[v] := true;
for каждой вершины y, смежной с v do
if not Visited[y] then
DepthSearch(y);
end;
begin
while есть непомеченные вершины do begin
v := любая непомеченная вершина;
DepthSearch(v);
end;
end.
Поиск в глубину для полного обхода графа с n вершинами и m дугами требует общего времени порядка O(max(n, m)). Поскольку обычно m n, то получается O(m).
Рисунок 51. Поиск в глубину
-
Содержание
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67