2.4.2. Задачи Data Mining
Методы Data Mining помогают решить многие задачи, с которыми сталкивается аналитик. Из них основными являются: классификация, регрессия, поиск ассоциативных правил, кластеризация и прогнозирование. Ниже приведено краткое описание основных задач анализа данных.
Задача классификации сводится к определению класса объекта по его характеристикам. Необходимо заметить, что в этой задаче множество классов, к которым может быть отнесен объект, заранее известно.
Задача регрессии подобно задаче классификации, позволяет определить по известным характеристикам объекта значение некоторого его параметра. В отличие от задачи классификации, значением параметра является не конечное множество классов, а множество действительных чисел.
При поиске ассоциативных правил целью является нахождение зависимостей (или ассоциаций) между объектами или событиями. Найденные зависимости представляются в виде правил и могут быть использованы как для лучшего понимания природы анализируемых данных, так и для предсказания появления событий.
Задача кластеризации заключается в поиске независимых групп (кластеров) и их характеристик во всем множестве анализируемых данных. Решение этой задачи помогает лучше понять данные. Кроме того, группировка однородных объектов позволяет сократить их число, а, следовательно, облегчить анализ.
Перечисленные задачи делятся по назначению на описательные и предсказательные.
Описательные (descriptive) задачи уделяют внимание улучшению понимания анализируемых данных. Ключевой момент в таких моделях — легкость и прозрачность результатов для восприятия человеком. Возможно, обнаруженные закономерности будут специфической чертой именно конкретных исследуемых данных и больше нигде не встретятся, но это все равно может быть полезно и потому должно быть известно. К такому виду задач относятся кластеризация и поиск ассоциативных правил.
Решение предсказательных (predictive) задач разбивается на два этапа. На первом этапе на основании набора данных с известными результатами строится модель. На втором этапе она используется для предсказания результатов на основании новых наборов данных. При этом, естественно, требуется, чтобы построенные модели работали максимально точно. К данному виду задач относят задачи классификации и регрессии. Сюда можно отнести и задачи поиска ассоциативных правил, если результаты ее решения могут быть использованы для предсказания появления некоторых событий.
- Автоматизированные информационно-управляющие системы Учебное пособие
- Оглавление
- Часть I. Автоматизированные информационно-управляющие системы Основные понятия
- Глава 1. Информационно-управляющие системы реального времени §1.1. Особенности информационно-управляющих систем реального времени
- 1.1.1. Определение и основные характеристики информационно-управляющих систем реального времени
- 1.1.2. Операционные системы реального времени
- 1.1.3. Обзор систем реального времени
- §1.2. Построение информационно-управляющих систем реального времени на базе операционной системы qnx
- §1.3. Scada – системы
- §1.4. Scada – система trace mode
- 1.4.1. Обзор системы trace mode
- 1.4.2. Функциональная структура пакета
- 1.4.3. Обзор внедрения системы trace mode
- §1.5. Программно-технический комплекс DeltaV
- 1.5.1. Обзор системы DeltaV
- 1.5.2. Концепции системы DeltaV
- 1.5.3. Программные приложения DeltaV
- §1.6. Программно-технический комплекс Квинт
- 1.6.1. Описание
- 1.6.2. Структура программно-технического комплекса Квинт
- 1.6.3. Архитектура
- 1.6.4. Контроллеры
- 1.6.5. Рабочие станции
- 1.6.6. Сети
- 1.6.7. Система автоматизированного проектирования асу тп
- 1.6.8. Примеры внедрения
- §1.7. Системы автоматизации фирмы Siemens8
- 1.7.1. Состав программно-технического комплекса Totally Integrated Automation
- 1.7.2. Примеры автоматизации технологических процессов9
- §1.8. Системы автоматизации фирмы авв10
- 1.8.1. Основные направления деятельности
- 1.8.2. Системы управления, предлагаемые авв Автоматизация в России
- Глава 2. Обеспечивающие подсистемы информационно-управляющих систем и их характеристики §2.1. Программное обеспечение управления процессами
- 2.1.1. Реализация языков программирования стандарта мэк 6-1131/3 в системе trace mode
- 2.1.2. Описание языков программирования
- 2.1.3. Реализация регуляторов и объектов управления в scada-системе TraceMode
- §2.2. Программное обеспечение секвенциально-логического управления
- 2.2.1. Программируемые логические контроллеры
- 2.2.2. Языки программирования логических контроллеров
- 2.2.3. Пример реализации секвенциально-логических алгоритмов в trace mode
- §2.3. Средства идентификации и оптимизации
- 2.3.1. Идентификация характеристик технологических объектов
- 2.3.2. Идентификация характеристик технологических объектов с использованием стандартных методов Excel
- 2.3.3. Решение задачи оптимизация технологических объектов
- §2.4. Средства интеллектуального анализа данных
- 2.4.1. Общие представления о Data Mining13
- 2.4.2. Задачи Data Mining
- 2.4.3. Классы систем Data Mining
- 2.4.4. Основные этапы Data Mining
- Глава 3. Проектирование информационно-управляющих систем §3.1. Основные проблемы, системный подход и последовательность разработки
- §3.2. Адаптация информационно-управляющих систем к области применения
- §3.3. Информационные технологии проектирования иус
- §3.4. Концепции информационного моделирования
- Часть II. Примеры автоматизированных информационно-управляющих систем в управлении энергетической эффективностью технологических процессов
- 1. Оперативное управление технологическими процессами с прогнозом показателей энергетической эффективности16
- 2. Оперативное управление потоками энергетических ресурсов в производственных сетях с учетом динамики их аккумулирования19
- 3. Автоматизированная система диспетчерского управления теплоснабжением зданий на основе полевых технологий20
- 4. Паспортизация промышленных потребителей топливно-энергетических ресурсов с использованием средств автоматизации21
- 5. Оперативное управление экономичностью водяных тепловых сетей на основе макромоделирования22
- Подсистема автоматизированного анализа режимов теплоснабжения
- Методика анализа режимов тепловых сетей на основе макромоделирования
- Программное обеспечение анализа режимов тепловых сетей на основе макромоделирования
- 6. Оперативное регулирование экономичности горения в энергетических котлах24
- 7. Автоматизированный мониторинг тепловой экономичности оборудования электрических станций 27
- Резервы тепловой экономичности котлов
- Показатели энергетических ресурсов турбоагрегатов
- Резервы тепловой экономичности турбоагрегатов
- Оптимальное использование пара
- 8. Оптимизация нагрузки параллельно работающих турбоагрегатов по данным эксплуатации при неполных исходных данных28
- Постановка задачи оптимизации
- Решение задачи оптимизации
- Программа «тг-пар»
- Пример работы программы
- 9. Автоматизированная информационная система мониторинга остаточного ресурса энергетического оборудования30
- Методика оценки обобщенного остаточного ресурса энергетического оборудования
- Алгоритм оперативной оценки обобщенного остаточного ресурса энергооборудования с учетом состояния металла
- Программное обеспечение аис «Ресурс»
- 10. Автоматизированное управление процессами в охладительных установках электрических станций35
- Факторы, влияющие на охлаждение
- Устройство и основные характеристики градирен
- Оптимизация работы башенных градирен
- 11. Автоматизированная компрессорная установка41
- Математическое описание объекта управления
- Анализ вариантов установки пароструйного компрессора для подачи пара в деаэраторы энергокорпуса
- Автоматизированная система управления пароструйным компрессором
- 12. Лингвистический подход к оптимизации управления вельц-процессом45
- Алгоритм выделения области Парето-оптимальных режимов в информационной базе данных
- Нечеткие зависимости (лингвистические правила) в управлении процессом вельцевания
- 13. Энергетический менеджмент производства огнеупоров48
- Приложение. Обзор промышленных сетей
- 1. Протокол передачи данных modbus50
- 2. Протокол передачи данных bitbus
- 3. Протокол передачи данных anbus
- 4. Протокол передачи данных hart
- 5. Протокол передачи данных profibus52
- 5.1. Независимые от поставщика взаимодействия между промышленными объектами (Fieldbus Communication).
- 5.2. Семейство profibus
- 5.3. Основные характеристики profibus-fms и profibus-dp
- 5.3.1. Архитектура протокола profibus
- 5.3.2. Физический Уровень (1) протокола profibus
- 5.4.1. Прикладной Уровень (7)
- 5.4.2. Коммуникационная модель
- 5.4.3. Объекты коммуникации
- 5.4.4. Сервисные функции fms
- 6. Полевая шина foundation Fieldbus53