logo search
МатМод экология / Лабораторные работы

III. Обзор использования пакета statistica Neural Networks.

В пакете STATISTICA задача непрерывного прогнозирования представляется как задача регрессии. В контексте этой задачи нейронная сеть рассматривается как нелинейная функция, сложность которой контролируется "полупараметрически" - число элементов в сети влияет на сложность решения, но, конечно, аналитик не может видеть явный вид регрессионной функции.

Требуется построить нейронную сеть, вычисляющую выброс свинца в атмосферу в зависимости от количества и вида проезжающего транспорта. Данные хранятся в файле Свинец.xls.

Откройте файл Свинец.xls в пакете Statistica. Появится окно «Открытие файла».

Рис. 4. 33. Окно импорта.

Необходимо выбрать опцию «Импортировать выбранный лист» и выбрать название листа с данными:

Рис. 4. 34. Выбор листа Excel для импорта в пакет Statistica.

В следующем окне необходимо указать реальные параметры данных, которые, как правило, определяются и отображаются автоматически (кроме трех последних чекбоксов).

Рис. 4. 35. Задание области импорта.

После этого импортированные данные отобразятся в окне.

Рис. 4. 36. Результаты импорта.

Запустите пакет анализа при помощи нейронных сетей. Для этого выберите в меню «Анализ» пункт «Нейронные сети».

Рис. 4. 37. Выбор способа обработки данных – «нейронная сеть».

после чего появится окно пакета STATISTICA Neural Networks:

Рис. 4. 38. Стартовое окно анализа «нейронные сети».

Перейдите на вкладку «Быстрый», где необходимо задать тип задачи- Регрессия, и инструмент- Конструктор сетей.

Рис. 4. 39. Запуск конструктора нейросетей.

Далее, нажав кнопку «ОК», вы перейдете в режим выбора выходных (зависимых) и входных (независимых) переменных. В качестве первой выбираем «Свинец», а в качестве последних – количество автомобилей всех категорий. Столбцы «№» и «Улицы» остаются неиспользуемыми.

Рис. 4. 40. Выбор входных и выходных данных для нейросети.

Нажав «Ок» вы снова вернетесь на вкладку «Быстрый». Затем, снова нажав кнопку «Ок», вы переместитесь в окно формирования нейросети. На вкладке «Быстрый» необходимо выбрать тип сети- многослойный персептрон,

Рис. 4. 41. Выбор типа нейросети.

а на вкладке «Элементы» можно указать необходимое количество слоев, количество нейронов в каждом, а также вид функции активации:

Рис. 4. 42. Задание количества слоев и типов нейронов.

Далее, нажав кнопку «Ок», вы переместитесь к диалогу обучения:

Рис. 4. 43. Выбор способа обучения нейосети.

Здесь, нажав на кнопку «Выборки», можно задать количество обучающих, контрольных и тестовых примеров. Если задать число тестовых и контрольных примеров равными нулю, то сеть будет обучаться по всем примерам:

Рис. 4. 44. Определение данных для обучения и тестирования.

Вернувшись в главное окно обучения, можно, нажав на кнопку «Пользователя» и перейдя к вкладке «Интерактивный», потребовать, что бы процесс обучения отражался в виде графика:

Рис. 4. 45. Задание вида графика для демонстрации процесса обучения.

Наконец, нажав на кнопку «Ок», вы запустите процесс обучения, результат которого отобразится на графике:

Рис. 4. 46. Обучение нейросети.

Нажав на кнопку «Ок», вы перейдете к окну результатов, где можете изучать различные характеристики созданной сети, перемещаясь по вкладкам окна:

Рис. 4. 47. Результаты моделирования нейросети.

Так, например, на вкладке «Дополнительно» существует кнопка «Архитектура сети», нажав на которую можно увидеть топологию построенной сети:

Рис. 4. 48. Вид построенной нейросети.

а также кнопка «Наблюдения пользователя», где можно задать сети новые исходные данные и получить ответ уже обученной сети:

легковые авто

грузовые авто

автобусы

легковые авто дизель

грузовые авто дизель

тракторы

автобусы дизель

уровень свинца

1386

174

114

18

84

0

18

128793,3