Метод ветвей и границ
Перебор, который осуществляет поиск с возвратом, можно уменьшить, используя идею метода «ветвей и границ». Эта идея состоит в том, что можно не искать точную оценку хода, про который стало известно, что он не может быть лучше, чем один из ходов, рассмотренных раньше. Пусть, например, в процессе перебора стало известно, что f(p1) = -10. Отсюда заключаем, что f(p) 10, и потому не нужно знать точное значение f(p2), если каким-либо образом узнали, что f(p2) -10 (поскольку отсюда следует, что -f(p2) 10). Итак, если p21 допустимый ход из p2 и f(p21) 10, можно не исследовать другие ходы из p2. Говорят, что ход в позицию p2 «опровергается» (ходом в p1), если у противника в позиции p2 есть ответ, по крайней мере, столь же хороший, как его лучший ответ в позиции p1. Ясно, что если ход можно опровергнуть, можно не искать наилучшее опровержение.
Эти рассуждения приводят к методу «ветвей и границ», гораздо более экономному, чем поиск с возвратом. Определим метод «ветвей и границ» как процедуру с двумя параметрами p и bound, вычисляющую f’(p, bound). Цель алгоритма – удовлетворить следующим условиям:
f’(p, bound) = f(p), если f(p) < bound,
f’(p, bound) > bound, если f(p) bound.
Идею метода ветвей и границ реализует следующий алгоритм.
function B&B(p: position, bound: integer): integer;
{оценивает и возвращает выигрыш F’(p) для позиции p}
label done;
var
m,i,t,d: integer;
begin
Определить позиции p1,...,pd, подчиненные p;
if d = 0 then B&B := f(p) else begin
m := -;
for i:= 1 to d do begin
t := - B&B(pi, -m);
if t > m then m := t;
if m >= bound then goto done;
end;
done: B&B := m;
end;
end;
-
Содержание
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67