logo search
Учебник Математики и информатики

Операции булевой алгебры

Функции математической логики ввёл Джордж Буль (1815-1864 г.). Говоря о творчестве Джорджа Буля, исследователи истории вычислительной техники непременно подчеркивают, что этот выдающийся английский ученый первой половины XIX века был самоучкой. Возможно, именно благодаря отсутствию «классического» (в понимании того времени) образования, Джордж Буль внес в логику, как в науку, революционные изменения. Занимаясь исследованием законов мышления, он применил в логике систему формальных обозначений и правил, близкую к математической. Впоследствии эту систему назвали логической алгеброй или булевой алгеброй. Правила этой системы применимы к самым разнообразным объектам и их группам (множествам, по терминологии автора). Основное назначение системы, по замыслу Дж. Буля, состояло в том, чтобы кодировать логические высказывания и сводить структуры логических умозаключений к простым выражениям, близким по форме к математическим формулам. Результатом формального расчета логического выражения является одно из двух логических значений: истина или ложь.

Значение логической алгебры долгое время игнорировалось, поскольку ее приемы и методы не содержали практической пользы для науки и техники того времени. Однако, когда появилась принципиальная возможность создания средств вычислительной техники на электронной базе, операции, введенные Булем, оказались весьма полезны. Они изначально ориентированы на работу только с двумя сущностями: истина и ложь. Нетрудно понять, как они пригодились для работы с двоичным кодом, который в современных компьютерах тоже представляется всего двумя сигналами: ноль и единица.

Не вся система Джорджа Буля (как и не все предложенные им логические операции) были использованы при создании электронных вычислительных машин, но три основные операции: И (пересечение), ИЛИ (объединение), НЕ (обрамление, отрицание) — лежат в основе работы всех видов процессоров современных компьютеров.

Рассмотрим несколько простых высказываний, про каждое из которых можно сказать истинно оно или ложно:

Х n = { 1, если истинно; 0 – если ложно}.

Из данных логических высказываний строятся новые высказывания, про каждое из которых можно сказать истинно оно или ложно.