logo
Predmet

[Править]Неклассические логики

1. Интуиционистская логика высказываний. Конструктивное понимание логических связок, семантика Крипке.

Аксиомы интуиционистского исчисления высказываний. Теорема о корректности и полноте интуиционистского исчисления высказываний относительно семантики Крипке.

Доказательство невыводимости законов исключенного третьего и снятия двойного отрицания в интуиционистском исчислении высказываний. Свойство дизъюнктивности для интуиционистской логики. Невозможность задания интуиционистских связок истинностными таблицами с конечным числом значений.

2. Многозначная логика.

3. Модальная логика. Язык модальной логики. Примеры модальностей в естественном языке. Системы аксиом для логик K, K4, S4, S5, GL, Grz. Семантика Крипке для модального языка. Классы шкал Крипке, соответствующие основным аксиомам логик K, K4, S4, S5, Grz. Полнота K, K4, S4, S5, Grz относительно семантики Крипке. Вложение интуиционистской логики высказываний в S4.

4. Временные операторы, языки временных логик. Логика данной шкалы времени. Примеры временных логик: логики линейного времени, логики ветвящегося времени. Перевод формул языка пропозициональной временной логики на языки классической логики I-го и II-го порядка. Пример неэлементарной временной логики. Разрешимость линейных временных логик. Временные логики и верификация программ.

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Высказывания могут быть истинными, ложными или содержащими истину и ложь в разных соотношениях.