Сапр в легкой промышленности
Легкая промышленность в отличие, например, от машиностроительной промышленности, обязана быстро реагировать на постоянно изменяющийся рынок. Сегодня швейные и обувные предприятия хотят производить одежду и обувь качественно, быстро, сменяя свой ассортимент и выпуская новые коллекции. Рост объёма проектных работ в условиях частой сменяемости моделей особо остро ставит задачу сокращения сроков и повышения качества процесса проектирования.
Развитие вычислительной техники в совокупности с необходимостью изготовления конкурентоспособной одежды и обуви заставляют производителей внедрять новейшие технологии на всех этапах проектирования и изготовления изделий легкой промышленности. Большинство из этих технологий основано на применении систем компьютерного моделирования и технологической подготовки производства как самой одежды и обуви, так и технологической оснастки для ее серийного выпуска.
Отечественные и иностранные программные продукты для легкой промышленности − САПР являются серьезным помощником в решении этих задач.
Первыми в мире приступили к автоматизации процессов в легкой промышленности американцы. Они создали автоматизированную раскройную установку (АРУ) для порезки настилов ткани специальным ножом без предварительной разметки по заданной программе. Путь к широкому промышленному использованию данной разработки не был простым. Разработчики около пяти лет убеждали предприятия легкой промышленности в эффективности и перспективности этого подхода. И только однажды им удалось уговорить одно автомобильное предприятие попробовать установку при раскрое материалов для сидений. Результат превзошел все ожидания. Только после этого комплекс начали использовать на предприятиях легкой промышленности.
В нашей стране первая САПР для легкой промышленности была разработана совместно специалистами отдела математического моделирования и оптимального проектирования Института проблем машиностроения АН Украины и Проектно-конструкторского бюро автоматизированных систем управления текстильной и легкой промышленности в Москве. Система разрабатывалась на базе АРМ СМ-4.
Специалисты Института разработали программное обеспечение проектирования раскладок (САПР).
В 1988 году система демонстрировалась на ВДНХ СССР. САПР была отмечена "Золотой медалью" поскольку реализованная программа автоматического проектирования раскладок превосходила все известные в мире программы.
Разработанная система удовлетворяла необходимым требованиям, но не получила широкого распространения из-за дефицита компьютерных и технических средств.
Ситуация поменялась в середине 80-х годов прошлого века, когда было решено приобрести лицензию испанской фирмы Investronica на производство автоматизированных настилочно-раскройных комплексов. Это решение дало мощный импульс к разработке отечественных САПР одежды, в которых проектирование охватывает весь процесс создания образцов изделий от разработки лекал до их раскроя. Появление относительно дешевых персональных компьютеров и средств периферии, привело к тому, что в настоящее время САПР в производстве одежды широко используется не только на крупных предприятиях, но и в небольших фирмах и ателье.
Наиболее развитые системы проектирования одежды включают дизайнерские программы, позволяющие разрабатывать внешний вид изделий, подбирать наиболее удачные сочетания расцветок ткани, конструкторские программы, реализующие творческий замысел дизайнера в лекалах, технологические программы оптимизации раскладки лекал на материале и проектирования процесса раскроя и пошива изделий, учитывающие особенности конкретных производств.
Количество существующих САПР для швейной промышленности исчисляется десятками. Все они обладают как преимуществами, так и недостатками по отношению друг к другу
Среди отечественных САПР одежды можно назвать следующие: T-FLEX / Одежда – система моделирования одежды (г. Самара); САПР «КОМТЕНС» предприятия «Кристи»; САПР «АССОЛЬ» – универсальная система автоматизированного проектирования для швейной, обувной, кожгалантерейной промышленности разработана в Центре «Прикладные Компьютерные Технологии» Московского Физико-технического института на базе мощного графического редактора AutoCAD фирмы AutoDesk – мирового лидера в области САПР; САПР «ГРАЦИЯ» разработана группой компьютерных технологий раскроя в составе специалистов национальной Академии Украины и научно-производственной фирмы «Информационные компьютерные системы»
Среди зарубежных САПР можно выделить следующие: NovoCutSystemsGmbH(Германия),Investronica(Испания),Lectra(Франция),ReflectionFabrixInc.,OptiTex(Израиль),Grafis,Gerber(США), Cybrid (Англия), PADsystemкомпанииCadrus.
Специфика швейного производства, обусловленная быстрой сменой и обновлением ассортимента выпускаемой продукции, предъявляет к САПР особые требования, главным из которых является открытость системы. Открытые системы способны к саморазвитию, приспособлению к изменяющимся технологическим задачам производства. По признаку открытости отечественные системы выгодно отличаются от зарубежных.
Среди отечественных систем особого внимания заслуживает система комплексной автоматизации конструкторской и технологической подготовки раскроя САПР "Грация", разработанная специалистами фирмы "Инфоком", принципы построения и функционирования которой позволяют решать задачи не только технического, но и интеллектуального плана. Последнее достигнуто за счет возможности организации ветвящихся процессов, реализуемых по законам математической логики, что свойственно системам искусственного интеллекта (СИИ). Удобный интерфейс, развитая сеть поддерживающих функций, реализация принципов наследования и саморегулирования, а также наличие широкой базы исходных данных и в том числе размерных признаков типовых фигур превращают работу проектировщика в творческий процесс, избавляя его от рутинных процедур.
Система позволяет осуществить комплексную автоматизацию: выполнение художником эскиза и рисунка изделия, формирование цветового решения модели; построение базовых конструкций лекал по выбранной методике конструирования; разработку модельных конструкций, формирование лекал; автоматическое размножение по размерам, ростам и полнотам; автоматическое формирование табеля мер, подготовка и печать комплекта конструкторской документации; проектирование раскладок в автоматическом и полуавтоматическом режимах; зарисовка раскладок в натуральную величину и в масштабе; создание управляющих программ порезки настилов на автоматизированных раскройных установках отечественного и зарубежного производства.
По интеллектуальным возможностям, уровню автоматизации процессов проектирования и производительности превосходит известные зарубежные и отечественные системы. Основу алгоритмов системы и её интеллектуальных возможностей составляют математические методы геометрического проектирования, обеспечивающие автоматическое выполнение и контроль геометрических и технологических ограничений.
САПР «ГРАЦИЯ» используется:
на крупных и малых предприятиях для автоматизации процессов подготовки раскроя, увеличения объёмов выпуска и сокращения сроков запуска в производство модных изделий;
на предприятиях, имеющих систему Gerber или Investronica, для увеличения числа рабочих мест конструктора и раскладчика и постепенной полной их замены. Система «ГРАЦИЯ» согласуется с имеющимися дигитайзерами, плоттерами и раскройными установками, что обеспечивает параллельную работу систем определённое время, даёт возможность провести сравнение производительности и экономичности систем, свести до минимума влияние замены систем на выполнение производственной программы;
на кафедре моделирования, конструирования и дизайна Южно-Российского государственного университета экономики и сервиса наряду с САПР NovoCutSystemsGmbHи «КОМТЕНС».
САПР «ГРАЦИЯ» имеет модульную структуру и включает следующие подсистемы.
Подсистема «Дизайн» предназначена для создания эскизов, рисунков или фотографий, формирования цветового решения, организации компьютерного каталога изделий. Для создания эскиза или рисунка изделия подключаются графические редакторы PhotoShop, CorelDraw или другие по выбору дизайнера. Дизайнер может также выполнить эскиз или рисунок вручную и ввести в компьютер с помощью сканера. Также можно представить образ изделия в виде фотографии, взятой из каталога или полученной с помощью цифрового фотоаппарата. Важно, что информация представляется в виде файла в цифровом виде. Файл включается в базу данных моделей и становится доступным для просмотра специалистам на всех последующих этапах разработки изделия.
Подсистема «Конструирование и Моделирование» предназначена для разработки базовой и модельной конструкций, разработки лекал и конструкторской документации на все рекомендуемые размеры и роста.
Подсистема «Технология изготовления» предназначена для создания и ведения баз данных оборудования, специальностей, тарифных ставок, справочника неделимых и организационных операций, составления технологических последовательностей, схем разделения труда, расчета времени и стоимости изготовления.
Подсистема «Раскладки» предназначена для проектирования оптимальных раскладок лекал в соответствии с указанными в задании на раскладку требованиями и пожеланиями раскладчика в ручном, автоматическом и полуавтоматическом режиме.
Подсистема «Планирование» обеспечивает взаимосвязь всех подсистем, учет выполненных работ и координацию всех этапов подготовки производства.
Подсистема «Складской учет» предназначена для ведения учета основных и вспомогательных материалов, фурнитуры, а также готовой продукции.
Подсистема «Управление предприятием» предназначена для оперативного обеспечения руководства предприятия всей необходимой информацией для принятия эффективных управленческих решений.
Подсистема «Индивидуальные и корпоративные заказы» Данная подсистема предназначена для ведения базы данных обмеров клиентов, автоматического перестроения лекал созданных моделей на конкретные фигуры с учетом их размеров и осанки.
В рамках дисциплины «Информатика» не ставится задача обучения студентов САПР в легкой промышленности, так как для студентов данных направлений учебным планом предусмотрены следующие дисциплины:
для всех направлений подготовки в 6 семестре − дисциплина «Специальные программы САПР»;
для направления подготовки 262000 (профиль подготовки 26200001 «Технология швейных изделий») в 7 семестре − дисциплина «Проектирование швейных изделий в САПР»;
для направления подготовки 262000 (профиль подготовки 26200002 «Технология изделий из кожи») в 8 семестре − дисциплина «Проектирование изделий из кожи в САПР»;
для направления подготовки 262200 (профиль подготовки 26220001 «Конструирование швейных изделий») в 8 семестре − дисциплина «САПР одежды»;
для направления подготовки 262200 (профиль подготовки 26220002 «Конструирование изделий из кожи») в 6 семестре − дисциплина «САПР обуви и галантерейных изделий».
В данном пособии предусматривается первое знакомство с САПР в легкой промышленности. Цель данного раздела − показать студентам необходимость изучения компьютерных технологий, так как наилучшая форма организации процесса проектирования достигается именно при применении САПР. Если раньше искусством кроя овладевали с сантиметровой лентой в руках, то теперь первым инструментом для решения конструкторских задач стал компьютер. Это предъявляет повышенные требования к общему уровню профессиональной подготовки специалистов.
Рассмотрим использование САПР «Грация» для разработки конструкции модели женского жакета прилегающего силуэта для женщин младшей возрастной группы на отдельных этапах проектирования.
С целью уточнения требований к проектируемому изделию выбираются модели аналоги из журналов мод. Эскизы моделей-аналогов представлены на рисунке 16.5.
|
|
Рис. 16.53. – Модели-аналоги
На основании сформулированных требований к проектируемому изделию, проведённого анализа выбранных моделей-аналогов с учётом перспективных направлений моды, а также требований к материалам разработана модель жакета.
На рисунках 16.6 и 16.7 представлены эскиз проектируемой модели и технический эскиз модели.
При построении конструкции с использованием САПР «Грация» выполняют определенную последовательность действий, каждое из которых записывают соответствующей строкой алгоритма. Последовательность строк формирует маршрут по созданию конструкции изделия.
Реализуется следующая схема построения алгоритма:
задание размера рисунка;
построение базисной сетки;
построение базовой конструкции;
разработка модельной конструкции;
формирование на чертеже деталей изделия;
проектирование припусков на швы;
определение надсечек на контурах деталей;
задание направления долевой линии детали;
задание точки совмещения деталей разных размеров и ростов по схеме градации;
отметка особых конструктивных точек в детали;
задание класса лекал, определяющих принадлежность детали к виду материала (верх, подкладка, прокладочная ткань и т.п.);
проектирование лекал на все рекомендуемые размерные и ростовые варианты.
Исходными данными для построения чертежа базовой конструкции изделия является размерная характеристика фигуры человека и прибавки.
Используем подсистему «Конструирование и моделирование» САПР «Грация» для построения чертежей базовой конструкции спинки, переда и рукава жакета. Суть предложенной технологии состоит в том, что конструктор записывает процесс построения с помощью операторов в виде последовательности действий − алгоритма. При выполнении записанных действий система производит вычисления и графические построения.
На рисунках 16.8÷16.16 представлены результаты выполнения первых нескольких этапов построения алгоритма.
|
|
|
|
|
|
|
|
|
Результаты предыдущих пошаговых действий представлены в окне «Завершение мастера запуска».
После этого появится окно подсистемы «Конструирование и моделирование Конструктор» (рис. 16.17). При построении конструкции широко используется вертикальная «Панель мастеров» (рис. 16.18), которая находится у левого края экрана. На рисунке 16.17 панель мастеров изображена слева от окна чертежа.
В подсистеме «Конструирование и моделирование» экран монитора разделен на две части: окно чертежа, в котором система отображает выполнение операторов и осуществляет соответствующие построения и окно алгоритма, в котором конструктор с помощью операторов описывает процесс построения и приемы моделирования.
Для удобства использования все операторы по своему функциональному назначению разделены на 5 групп: действия с точками, действия с линиями, графические действия, действия с деталями, действия по структуре алгоритма.
При создании оператора (например, поставить точку, провести линию или выполнить любое другое действие) конструктору помогает «Мастер», который последовательно подсказывает какие действия, объекты и данные нужно указать для выполнения оператора. Таким образом, для творческой работы в САПР «Грация» от конструктора требуется только знать, как его замыслы реализуются вручную на бумаге, а как это построить в САПР поможет мастер-помощник.
Выполнение одной строки алгоритма (одного оператора) вызывает выполнение одного действия по реализации процесса проектирования. По мере последовательной записи и выполнения алгоритма с помощью функций команд меню "Мастера " − «Действия с точками», «Действия с линиями», «Графические действия», развивается и наращивается чертеж (рис. 16.19)
Последовательность построения конструкции модели «Жакет женский» представлена на рисунках 16.19÷16.25.
Модельные особенности проектируются на чертеже базовой конструкции с использованием различных способов конструктивного моделирования.
При построении модельной конструкции жакета были выполнены следующие приемы технического моделирования:
плечевая вытачка на спинке частично заменена посадкой, частично переведена в пройму;
вытачка на выпуклость груди переведена в пройму;
построение линий рельефов, идущих от проймы на спинке и переде;
построена линия низа изделия;
намечены линии карманов, чуть ниже талии.
построена линия края борта с закруглённым нижним углом;
построен воротник-шалевый с фигурным отлётом.
Модельные конструкции спинки и переда жакета женского и его втачного рукава, созданные в САПР «Грация» представлены на рисунках 16.21, 16.22.
После построения базовой конструкции чертежа и разработки модельной конструкции, на чертеже созданы детали изделия с помощью команды меню "Панель Мастеров» - «Действия с деталями» . В окне «Операторы» со списком операторов действий с деталями выбираем оператор «Деталь».
В результате получены контурные линии деталей основного материала спинки и переда жакета (рис. 16.23). Аналогично получаем контурные линии деталей рукава. Контурные линии деталей подкладки и приклада жакета и рукава можно получить копированием и последующим редактированием.
Следующий шаг в подготовке деталей к производству − задание припусков на шов. Чтобы задать припуски на шов для очередной детали, выбираем «Действия с деталями» в панели мастеров. В появившемся окне«Операторы» выбираем оператор «Шов».
В результате последовательного ввода алгоритма получен чертеж модельной конструкции основного материала спинки и переда жакета женского с припусками на шов (рис. 16.24). Аналогично получаем чертежи модельной конструкции рукава жакета женского с припусками на шов (рис. 16.25).
Результаты работы в САПР «Грация» можно вывести на широкоформатный плоттер. Вывод деталей модели на плоттер выполняется с помощью пункта меню «Модель»/«Показать модель». В появившемся окне «Модель» выбираем первую деталь нашей модели. С помощью пункта меню «Алгоритм»/«Вывод на плоттер» выводим деталь на плоттер.
После завершения построения базового чертежа жакета, моделирования, оформления деталей, припусков на шов, выводим детали жакета на раскладку. Раскладка лекал − необходимая операция, обеспечивающая построение рациональной схемы раскроя лекал на материале в соответствии с используемыми технологическими ограничениями. Одним из неоспоримых преимуществ использования раскладки лекал является минимальный расход данного материала при раскрое. Для данной операции предназначена подсистема «Раскладки». В подсистеме реализованы три основных режима проектирования раскладок: ручной, автоматический и полуавтоматический. В данной работе раскладка выполнялась в полуавтоматическом режиме.
Результаты работы в подсистеме «Раскладки» представлены на рисунке 16.26.
Построенную раскладку можно вывести на широкоформатный или узкий плоттер. При выводе широкой раскладки на узкий плоттер она автоматически разбивается на несколько полос с учетом ширины бумаги, выводятся отдельные полосы и склеиваются. Напечатанная на бумаге в натуральную величину раскладка (рисовка) используется в качестве разметки (намеловки) при раскрое настила.
Итак, на примере разработки модельной конструкции женского жакета мы смогли проследить весь путь создания конструкции с использованием САПР Грация и убедиться в том, что наилучшая форма организации процесса проектирования достигается при применении САПР, которые позволяют освободить проектировщика от выполнения рутинных задач, предоставить больше времени для творчества, повысить скорость и качество выполнения задач.
В 1990 году было всего несколько обувных предприятий, оснащенных САПР обуви. Такие системы были импортными и стоили очень дорого. Первая отечественная САПР обуви – АСКО была поставлена на Волгоградскую обувную фабрику в июне 1991 года. С этого момента начинается отсчет оснащения обувных фирм отечественными САПР. В настоящее время в России существует уже несколько САПР обуви, которые конкурируют между собой. Они практически вытеснили с рынка зарубежные обувные системы, хотя последние сдаваться не собираются. Иностранные системы русифицированы, их демонстрируют на выставках.
Среди отечественных САПР обуви наибольшее распространение получила система АСКО-2Д. САПР АСКО-2Д является разработкой центра САПР РосЗИТЛП (Российский заочный институт текстильной и лёгкой промышленности). Используя САПР АСКО-2Д можно нарисовать цветные графические эскизы, выполнить конструкторскую разработку моделей,отградировать шаблоны деталей,получить технологическую документацию на модель,оперативно рассчитать нормы расхода основных и вспомогательных материалов, подготовить сопроводительные документы. Этапы разработки конструкции модели мужской модельной обуви в САПР АСКО-2Д представлены на рисунках 16.27÷16.36.
К настоящему моменту эта система работает более чем на 60 предприятиях. Дружественный интерфейс, удобство в работе, возможность создания большого количества моделей, быстрота в обучении и освоении способствовали тому, что АСКО-2Д приобрели также фирмы, выпускающие обувь по индивидуальным заказам и даже ортопедическую обувь. Использование САПР позволяет разработать широкий ассортимента моделей обуви, сокращает время внедрения моделей в производство. Программа «Нормирование материалов» поможет правильно выбрать процент использования основных и вспомогательных материалов для верха обуви, а программа «Паспорт» - оперативно оценить затраты на основные материалы для производства серии моделей с учетом выбранного процента использования и заданной ростовки.
Среди САПР легкой промышленности также следует отметить САПР "Ассоль". Это универсальная система автоматизированного проектирования для швейной, обувной, кожгалантерейной промышленности.
САПР "Ассоль" разработана в Центре "Прикладные КомпьютерныеТехнологии" Московского Физико-технического института на базе мощного графического редактора AutoCAD фирмы AutoDesk - мирового лидера в области САПР. При создании системы использованы современные информационные технологии и методы конструирования одежды.С декабря 2002 года АССОЛЬ-ОБУВЬ работает в производстве.
На сегодняшний день АССОЛЬ-ОБУВЬ содержит средства автоматизирующие работу конструктора на плоскости. Она позволяет разрабатывать модели любых конструкций, в десятки раз сокращает время подготовки модели к производству.
Из иностранных программных продуктов для обувной промышленности, следует отметить программы семейства Power Solution фирмы Delcam plc.
Фирма Delcam plc является лидирующим поставщиком CAD/CAM-решений для обувной промышленности во всех странах мира. Программы семейства Power Solution позволяют решать задачи по проработке дизайна, декорированию и изготовлению всех типов обуви. Это подтверждает выбор, сделанный в пользу программных решений на базе Power Solution, такими ведущими производителями обуви и специализированными фирмами по изготовлению оснастки для обувной промышленности, как Nike (США), Clarks (Великобритания), Ecco (Дания), Eram (Франция), Feng Tay и Pou Chen (Тайвань), Azaleia (Бразилия), Apego и STM Meccanica (Италия) и др.
Появление нового модуля семейства Power Solution — PS-Shoemaker можно считать знаковым событием для фирмы, которая постепенно начинает расширять круг своих интересов. Если раньше ее программное обеспечение имело сугубо технологический характер, то теперь оно начинает претендовать на дизайнерский сектор рынка. Само название Shoemaker (сапожник) прямо указывает, что это приложение предназначено для обувной промышленности. PS-Shoemaker представляет собой CAD/CAM-систему для создания дизайна, моделирования и изготовления элементов (подошв, каблуков и др.) обуви и технологической оснастки для их серийного производства.
- Информатика
- Режим доступа к электронному аналогу печатного издания: http://www.Libdb.Sssu.Ru
- Содержание
- Предисловие
- Основные понятия информатики
- Понятие информации
- Свойства информации
- Понятие количества информации
- Предмет и задачи информатики
- Информационное общество
- Вопросы и тестовые задания для самоконтроля
- Системы счисления и представление информации в эвм
- Представление (кодирование) данных
- Понятие об основных системах счисления
- Перевод чисел из одной системы счисления в другую
- Представление чисел в различных системах счисления
- Двоичная арифметика
- Арифметические действия над двоичными числами
- Представление чисел в эвм
- Примеры представления целых чисел в шестнадцатиразрядных двоичных кодах
- Представление десятичных чисел в четырёхразрядном коде Грея
- Кодирование информации в эвм
- Базовая таблица кодировки ascii
- Вопросы и тестовые задания для самоконтроля
- Логические основы построения эвм
- Основы алгебры логики
- Операции сравнения
- Примеры операторов сравнения в разных языках программирования
- Логические операции
- Основные логические операторы
- Результаты, возвращаемые логическими операциями
- Основы элементной базы эвм
- Условные обозначения и диаграммы работы логических элементов
- Rs-триггер
- Элементы теории множеств
- Элементы теории графов
- Типы вершин блок-схем алгоритмов
- Вопросы и тестовые задания для самоконтроля
- Технические средства реализации информационных процессов
- История развития эвм
- Классификация эвм
- Архитектура эвм
- Состав персонального компьютера
- Внешние устройства
- Вопросы и тестовые задания для самоконтроля
- Системное программное обеспечение эвм
- Базовые понятия ос
- Классификация операционных систем
- Файловая структура эвм
- Примеры общепринятых расширений для популярных типов файлов
- Файловые системы Microsoft Windows
- Драйверы устройств
- Служебные программы
- Обзор операционных систем unix и Linux
- Обзор операционных систем Windows
- Вопросы и тестовые задания для самоконтроля
- Прикладное и инструментальное программное обеспечение
- Прикладное программное обеспечение общего назначения
- Прикладное программное обеспечение специального назначения
- Инструментальное по
- Нумерация версий программ
- Правовой статус программ
- Текстовые редакторы и процессоры
- Программы подготовки презентаций
- Вопросы и тестовые задания для самоконтроля
- Электронные таблицы
- Основные понятия электронных таблиц Excel
- Ввод, редактирование и форматирование данных
- Вычисления в таблицах
- Диаграммы
- Вопросы и тестовые задания для самоконтроля
- Модели решения функциональных и вычислительных задач
- Моделирование как метод познания
- Классификация моделей
- Классификация видов моделей
- Компьютерное моделирование
- Информационные модели
- Примеры информационных моделей
- Базы данных
- Искусственный интеллект
- Вопросы и тестовые задания для самоконтроля
- Основы алгоритмизации
- Основные этапы компьютерного решения задач
- Понятие алгоритма и его свойства
- Исполнители алгоритмов
- Способы описания алгоритмов
- Обозначение и функциональное назначение наиболее часто употребляемых символов в схемах данных и программ
- Базовые управляющие структуры алгоритмов (основные алгоритмические конструкции)
- 2) Альтернатива (ветвление);
- 3) Итерация1 (цикл).
- Алгоритмы линейной структуры
- Алгоритмы ветвящейся структуры
- Алгоритмы циклической структуры
- Способы комбинации базовых управляющих структур (основных алгоритмических конструкций)
- Примеры комбинации основных алгоритмических структур
- Вопросы и тестовые задания для самоконтроля
- Основы программирования на языках высокого уровня
- Основные понятия языков программирования
- Примеры использования имён
- Операторы в арифметических и логических выражениях
- Типы данных и операторы описания переменных
- Некоторые базовые типы переменных
- Описание переменных в разных языках
- Синтаксис операторов описания сложных типов переменных
- Основные операторы
- Синтаксис некоторыхоператоров
- Вопросы и тестовые задания для самоконтроля
- Основные операторы языка visual basic for applications
- Оператор присваивания
- Примеры использования оператора присваивания
- Условный операторIf … then
- Оператор выбора варианта*
- Операторы цикла
- Оператор циклаFor … next
- Математические функции
- Краткие сведения о математических функциях в vba и Паскале
- Функции обработки строк*
- Краткие сведения о строковых функциях
- Функции преобразования данных
- Краткие сведения о функциях преобразования данных
- Вопросы и тестовые задания для самоконтроля
- Технологии программирования
- Концепция программирования
- Характеристика трудоёмкости разработки программ
- Структурное и модульное программирование
- Рекурсивные алгоритмы *
- Объектно-ориентированное программирование
- Вопросы и тестовые задания для самоконтроля
- Языки и системы программирования
- Уровни языков программирования
- Системы программирования
- Классификация языков программирования
- Процедурные языки программирования
- Объектно-ориентированные языки
- Декларативные языки
- Языки программирования для баз данных и компьютерных сетей
- Языки моделирования *
- Вопросы и тестовые задания для самоконтроля
- Основные понятия компьютерной графики
- Виды компьютерной графики
- Графические форматы
- Цветовые модели *
- Программные средства создания растровых изображений
- Программы векторной графики
- Программные средства обработки трехмерной графики
- Вопросы и тестовые задания для самоконтроля
- Основные понятия баз данных
- Задачи, решаемые с помощью баз данных
- Классификация бд
- Реляционная модель данных
- Свойства полей базы данных
- Типы данных
- Безопасность и объекты баз данных
- Проектирование баз данных *
- Вопросы и тестовые задания для самоконтроля
- Средства автоматизации проектных, опытно-конструкторских и научно-исследовательских работ.
- Задачи, решаемые с помощью систем автоматического проектирования
- Программные продукты MathWorks
- Сапр в легкой промышленности
- Вопросы и тестовые задания для самоконтроля
- Основы компьютерных сетей
- Основы передачи данных
- Назначение и классификация сетей
- Сетевая модель osi/iso
- Сетевое оборудование
- Основные стандарты и протоколы
- Т Вопросы и тестовые задания для самоконтроля
- Глобальная сеть интернет
- Подключение к Интернет
- Службы Интернет
- Поиск информации в Интернете
- Наиболее известные и популярные поисковые системы
- Поиск с использованием языка запросов *
- Логические операторы
- Вопросы и тестовые задания для самоконтроля
- Основы информационной безопасности
- Угрозы информационной безопасности
- Методы и средства защиты информации
- Правовые основы информационной безопасности
- Ответственность за преступления в области информационных технологий
- Криптографические механизмы защиты информации
- Компьютерные вирусы и вредоносные программы
- Методы защиты от вирусов
- Вопросы и тестовые задания для самоконтроля
- Библиографический список
- Учебное издание информатика Учебное пособие