logo
Информатика_ЗФ / 2013_Информатика УМО_легпром

Искусственный интеллект

Идеи моделирования человеческого разума известны с древнейших времён. Впервые об этом упоминается в сочинении «Великое искусство» философа и теолога Раймунда Луллия (ок. 1235 – ок. 1315), который не только высказал идею логической машины для решения разнообразных задач, исходя из всеобщей классификации понятий (XIV в.), но и попытался её реализовать. Рене Декарт (1596–1650) и Готфрид Вильгельм Лейбниц (1646–1716) независимо друг от друга развивали учение о прирождённой способности ума к познанию и всеобщих и необходимых истин логики и математики, работали над созданием универсального языка классификации всех знаний. Именно на этих идеях базируются теоретические основы создания искусственного интеллекта.

Толчком к дальнейшему развитию модели человеческого мышления стало появление в 40-х гг. XX в. ЭВМ. В 1948 г. американский учёный Норберт Винер (1894–1964) сформулировал основные положения новой науки – кибернетики. В 1956 г. в Стенфордском университете (США) на семинаре под названием «Artificial intelligence» (искусственный интеллект), посвящённом решению логических задач, признано новое научное направление, связанное с машинным моделированием человеческих интеллектуальных функций и названное искусственный интеллект. Вскоре эта отрасль разделилась на два основных направления: нейрокибернетику и кибернетику «чёрного ящика».

Нейрокибернетика обратилась к структуре человеческого мозга как единственно мыслящему объекту и занялась его аппаратным моделированием. Физиологи давно выявили нейроны – связанные друг с другом нервные клетки как основу мозга. Нейрокибернетика занимается созданием элементов, аналогичных нейронам, и их объединением в функционирующие системы, эти системы называют нейросетями. В середине 80-х гг. XX в. в Японии был создан первый нейрокомпьютер, моделирующий структуру человеческого мозга. Его основная область применения – распознавание образов.

Кибернетика «чёрного ящика» использует другие принципы, структура модели не главное, важна её реакция на заданные входные данные, на выходе модель должна реагировать как человеческий мозг. Учёные этого направления занимаются разработкой алгоритмов решения интеллектуальных задач для имеющихся вычислительных систем. Наиболее значимые результаты:

С середины 70-х гг. реализуется идея моделирования конкретных знаний специалистов-экспертов. В США появляются первые экспертные системы. Возникает новая технология искусственного интеллекта, основанная на представлении и использовании знаний. С середины 80-х гг. искусственный интеллект коммерциализируется. Растут капиталовложения в эту отрасль, появляются промышленные экспертные системы, повышается интерес к самообучающимся системам.