9. Метрическое пространство
Метри́ческим простра́нством называется множество, в котором определено расстояние между любой парой элементов.
Метрическое пространство M есть множество точек с фиксированной функцией расстояния (также называется метрикой) , где обозначает множество вещественных чисел. Для любых точек из M эта функция должна удовлетворять следующим условиям:
(аксиома тождества).
(аксиома симметрии).
(аксиома треугольника или неравенство треугольника).
Эти аксиомы отражают интуитивное понятие расстояния. Например, расстояние должно быть неотрицательно, то есть (это вытекает из аксиомы треугольника при z = x) и расстояние от x до y такое же, как и от y до x.
Неравенство треугольника означает, что пройти от x до z можно короче, или хотя бы не длиннее, чем сначала пройти от x до y, а потом от y до z.
Второй метод представления географического пространства, называемый векторным, позволяет задавать точные пространственные координаты явным образом. Здесь подразумевается, что географическое пространство является непрерывным, а не разделенным на дискретные ячейки. Это достигается приписыванием точкам пары координат (X и Y) координатного пространства, линиям — связной последовательности пар координат их вершин, областям — замкнутой последовательности соединенных линий, начальная и конечная точки которой совпадают. Векторная структура данных показывает только геометрию картографических объектов. Чтобы придать ей полезность карты, мы связываем геометрические данные с соответствующими атрибутивными данными, хранящимися в отдельном файле или в базе данных. В растровой структуре мы записывали значение атрибута в каждую ячейку, в векторном же представлении мы используем совсем другой подход, храня в явном виде собственно графические примитивы без атрибутов и полагаясь на связь с отдельной атрибутивной базой данных. В векторных структурах данных линия состоит из двух или более пар координат, для одного отрезка достаточно двух пар координат, дающих положение и ориентацию в пространстве. Более сложные линии состоят из некоторого числа отрезков, каждый из которых начинается и заканчивается парой координат. Таким образом видно, что хотя векторные структуры данных лучше представляют положения объектов в пространстве, они не абсолютно точны. Они все же являются приближенным изображением географического пространства.
Хотя некоторые линии существуют самостоятельно и имеют определенную атрибутивную информацию, другие, более сложные наборы линий, называемые сетями, содержат также дополнительную информацию о пространственных отношениях этих линий. Например, дорожная сеть содержит не только информацию о типе дороги и ей подобную, она показывает также возможное направление движения. Другие коды, связывающие эти отрезки, могут включать информацию об узлах, которые их соединяют. Все эти дополнительные атрибуты должны быть определены по всей сети, чтобы компьютер знал присущие реальности отношения, которые этой сетью моделируются. Такая явная информация о связности и пространственных отношениях называется топологией.
Площадные объекты могут быть представлены в векторной структуре данных аналогично линейным. Соединяя отрезки линии в замкнутую петлю, в которой первая пара координат первого отрезка является одновременно и последней парой координат последнего отрезка, мы создаем область, или полигон. Как с точками и линиями, так и с полигонами связывается файл, содержащий атрибуты этих объектов.
- Компьютерная графика.
- 2. Задачи кг.
- Графические функции примитивов.
- 4. Вывод текста.
- 5. Понятие холста.
- 6. Графические примитивы
- 7. Базовые компоненты
- 9. Метрическое пространство
- 10) Двумерные аффинные преобразования координат.
- Поворот Rotate
- Тражение Reflection
- Сдвиг (Деформация)
- Растяжение и сжатие
- 16. Окно и область вывода.
- 17. Растровая графика, общие сведения
- Достоинства и недостатки растровой графики
- 18. Цвет в растре. Модель rgb.Кодировка цвета и яркости.
- 19. Цвет в растре. Модель cmy.
- 20. Растровые дисплеи.
- 23. Системы с телевизионным растром
- 24. Видеоадаптер
- 25.Дисплеи с регенерацией
- 26. Понятие фрактала и фрактальной графики.
- 27. Построение линий на растре.
- 28. Алгоритм Брезенхэма
- 29. Векторная графика: назначение, элементы, структура.
- 30. Каноническое уравнение прямой.
- 31. Параметрическое уравнение прямой и уравнение в отрезках. Параметрические уравнения прямой
- 32. Алгоритм определения принадлежности точки внутренности треугольника
- 34. Кривая Безье. Геометрическая интерпретация.
- 35. Раскраска на основе растровой развертки.
- 36. Заливка области с затравкой
- 0.5.1 Простой алгоритм заливки
- 37. Понятие точки схода.
- 38. Перспективные преобразования: подходы и решения.
- 39. Видовое преобразование координат.
- 40. Перспективное преобразование координат.
- 41. Аналитическая модель поверхности
- Векторная полигональная модель
- 43. Равномерная сетка
- Неравномерная сетка. Изолинии