26. Понятие фрактала и фрактальной графики.
Вы, наверное, часто видели довольно хитроумные картины, на которых непонятно что изображено, но все равно необычность их форм завораживает и приковывает внимание. Как правило, это хитроумные формы не поддающиеся, казалось бы, какому—либо математическому описанию. Вы, к примеру, видели узоры на стекле после мороза или, к примеру, хитроумные кляксы, оставленные на листе чернильной ручкой, так вот что—то подобное вполне можно записать в виде некоторого алгоритма, а, следовательно, доступно объясниться с компьютером. Подобные множества называют фрактальными. Фракталы не похожи на привычные нам фигуры, известные из геометрии, и строятся они по определенным алгоритмам, а эти алгоритмы с помощью компьютера можно изобразить на экране. Вообще, если все слегка упростить, то фракталы — это некое преобразование многократно примененное к исходной фигуре.
Фрактальная графика является на сегодняшний день одним из самых быстро развивающихся перспективных видов компьютерной графики.
Математической основой фрактальной графики является фрактальная геометрия. Здесь в основу метода построения изображений положен принцип наследования от, так называемых, «родителей» геометрических свойств объектов-наследников.
Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Одним из основных свойств фракталов является самоподобие. Объект называют самоподобным, когда увеличенные части объекта походят на сам объект и друг на друга. Перефразируя это определение, можно сказать, что в простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале.
В центре фрактальной фигуры находится её простейший элемент — равносторонний треугольник, который получил название «фрактальный». Затем, на среднем отрезке сторон строятся равносторонние треугольники со стороной, равной (1/3a) от стороны исходного фрактального треугольника. В свою очередь, на средних отрезках сторон полученных треугольников, являющихся объектами-наследниками первого поколения, выстраиваются треугольники-наследники второго поколения со стороной (1/9а) от стороны исходного треугольника.
Таким образом, мелкие элементы фрактального объекта повторяют свойства всего объекта. Полученный объект носит название «фрактальной фигуры». Процесс наследования можно продолжать до бесконечности. Таким образом, можно описать и такой графический элемент, как прямую.
Изменяя и комбинирую окраску фрактальных фигур можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также, составлять из полученных фигур «фрактальную композицию». Фрактальная графика, также как векторная и трёхмерная, является вычисляемой. Её главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому в памяти компьютера для выполнения всех вычислений, ничего кроме формулы хранить не требуется.
Только изменив коэффициенты уравнения, можно получить совершенно другое изображение. Эта идея нашла использование в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы.
Итак, базовым понятием для фрактальной компьютерной графики являются «Фрактальный треугольник». Затем идет «Фрактальная фигура», «Фрактальный объект»; «Фрактальная прямая»; «Фрактальная композиция»; «Объект-родитель» и «Объект наследник». Следует обратить Ваше внимание на то, что фрактальная компьютерная графика, как вид компьютерной графики двадцать первого века получила широкое распространение не так давно.
Её возможности трудно переоценить. Фрактальная компьютерная графика позволяет создавать абстрактные композиции, где можно реализовать такие композиционные приёмы как, горизонтали и вертикали, диагональные направления, симметрию и асимметрию и др. Сегодня немногие компьютерщики в нашей стране и за рубежом знают фрактальную графику. С чем можно сравнить фрактальное изображение? Ну, например, со сложной структурой кристалла, со снежинкой, элементы которой выстраивается в одну сложную структуру.
- Компьютерная графика.
- 2. Задачи кг.
- Графические функции примитивов.
- 4. Вывод текста.
- 5. Понятие холста.
- 6. Графические примитивы
- 7. Базовые компоненты
- 9. Метрическое пространство
- 10) Двумерные аффинные преобразования координат.
- Поворот Rotate
- Тражение Reflection
- Сдвиг (Деформация)
- Растяжение и сжатие
- 16. Окно и область вывода.
- 17. Растровая графика, общие сведения
- Достоинства и недостатки растровой графики
- 18. Цвет в растре. Модель rgb.Кодировка цвета и яркости.
- 19. Цвет в растре. Модель cmy.
- 20. Растровые дисплеи.
- 23. Системы с телевизионным растром
- 24. Видеоадаптер
- 25.Дисплеи с регенерацией
- 26. Понятие фрактала и фрактальной графики.
- 27. Построение линий на растре.
- 28. Алгоритм Брезенхэма
- 29. Векторная графика: назначение, элементы, структура.
- 30. Каноническое уравнение прямой.
- 31. Параметрическое уравнение прямой и уравнение в отрезках. Параметрические уравнения прямой
- 32. Алгоритм определения принадлежности точки внутренности треугольника
- 34. Кривая Безье. Геометрическая интерпретация.
- 35. Раскраска на основе растровой развертки.
- 36. Заливка области с затравкой
- 0.5.1 Простой алгоритм заливки
- 37. Понятие точки схода.
- 38. Перспективные преобразования: подходы и решения.
- 39. Видовое преобразование координат.
- 40. Перспективное преобразование координат.
- 41. Аналитическая модель поверхности
- Векторная полигональная модель
- 43. Равномерная сетка
- Неравномерная сетка. Изолинии