16. Методы структурного анализа и проектирования программного обеспечения
В структурном анализе и проектировании используются различные модели, описывающие:
- функциональную структуру системы;
- последовательность выполняемых действий;
- передачу информации между функциональными процессами;
- отношения между данными.
Наиболее распространенными моделями первых трех групп являются:
- функциональная модель SADT (Structured Analysis and Design Technique);
- модель IDEF3;
- DFD (Data Flow Diagrams) - диаграммы потоков данных.
Метод SADT представляет собой совокупность правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. Функциональная модель SADT отображает функциональную структуру объекта, т.е. производимые им действия и связи между этими действиями. Метод SADT разработан Дугласом Россом (SoftTech, Inc.) в 1969 г. для моделирования искусственных систем средней сложности. Данный метод успешно использовался в военных, промышленных и коммерческих организациях США для решения широкого круга задач, таких, как долгосрочное и стратегическое планирование, автоматизированное производство и проектирование, разработка ПО для оборонных систем, управление финансами и материально-техническим снабжением и др. Метод SADT поддерживается Министерством обороны США, которое было инициатором разработки семейства стандартов IDEF (Icam DEFinition), являющегося основной частью программы ICAM (интегрированная компьютеризация производства), проводимой по инициативе ВВС США. Метод SADT реализован в одном стандартов этого семейства - IDEF0, который был утвержден в качестве федерального стандарта США в 1993 г., его подробные спецификации можно найти на сайте http://www.idef.com.
Модели SADT (IDEF0) традиционно используются для моделирования организационных систем (бизнес-процессов). Следует отметить, что метод SADT успешно работает только при описании хорошо специфицированных и стандартизованных бизнес-процессов в зарубежных корпорациях, поэтому он и принят в США в качестве типового.
Достоинствами применения моделей SADT для описания бизнес-процессов являются:
- полнота описания бизнес-процесса (управление, информационные и материальные потоки, обратные связи);
- жесткие требования метода, обеспечивающих получение моделей стандартного вида;
- соответствие подхода к описанию процессов стандартам ISO 9000.
Метод моделирования IDEF3, являющийся частью семейства стандартов IDEF, был разработан в конце 1980-х годов для закрытого проекта ВВС США. Этот метод предназначен для таких моделей процессов, в которых важно понять последовательность выполнения действий и взаимозависимости между ними. Хотя IDEF3 и не достиг статуса федерального стандарта США, он приобрел широкое распространение среди системных аналитиков как дополнение к методу функционального моделирования IDEF0 (модели IDEF3 могут использоваться для детализации функциональных блоков IDEF0, не имеющих диаграмм декомпозиции). Основой модели IDEF3 служит так называемый сценарий процесса, который выделяет последовательность действий и подпроцессов анализируемой системы.
Диаграммы потоков данных (Data Flow Diagrams - DFD) представляют собой иерархию функциональных процессов, связанных потоками данных. Цель такого представления - продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.
Для построения DFD традиционно используются две различные нотации, соответствующие методам Йордона-ДеМарко и Гейна-Сэрсона. Эти нотации незначительно отличаются друг от друга графическим изображением символов. В соответствии с данными методами модель системы определяется как иерархия диаграмм потоков данных, описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи потребителю. Практически любой класс систем успешно моделируется при помощи DFD-ориентированных методов. Они с самого начала создавались как средство проектирования информационных систем (тогда как SADT - как средство моделирования систем вообще) и имеют более богатый набор элементов, отражающих специфику таких систем (например, хранилища данных являются прообразами файлов или баз данных, внешние сущности отражают взаимодействие моделируемой системы с внешним миром).
С другой стороны, эти разновидности средств структурного анализа примерно одинаковы с точки зрения возможностей изобразительных средств моделирования. При этом одним из основных критериев выбора того или иного метода является степень владения им со стороны консультанта или аналитика, грамотность выражения своих мыслей на языке моделирования. В противном случае в моделях, построенных с использованием любого метода, будет невозможно разобраться.
Наиболее распространенным средством моделирования данных (предметной области) является модель "сущность-связь" (Entity-Relationship Model - ERМ). Она была впервые введена Питером Ченом в 1976 г. Эта модель традиционно используется в структурном анализе и проектировании, однако, по существу, представляет собой подмножество объектной модели предметной области. Одна из разновидностей модели "сущность-связь" используется в методе IDEF1Х, входящем в семейство стандартов IDEF и реализованном в ряде распространенных CASE-средств (в частности, AllFusion ERwin Data Modeler).
- З курсу
- З курсу
- Содержание
- Часть I. Инженерные основы программного обеспечения 10
- Часть II. Требования к программному обеспечению 33
- Часть III. Моделирование программного обеспечения 52
- Часть IV. Технологии разработки программного обеспечения 124
- Часть V. Письменная коммуникация. Документирование проекта Программного обеспечения 145
- Часть VI. Управление проектом программного обеспечения 192
- Предисловие
- Часть I. Инженерные основы программного обеспечения
- 1. Введение в программную инженерию
- 1.1. Вопросы и ответы об инженерии программного обеспечения
- 1.2. Профессиональные и этические требования к специалистам по программному обеспечению
- 2. Системотехника вычислительных систем
- 2.1. Интеграционные свойства систем
- 2.2. Система и ее окружение
- 2.3. Моделирование систем
- 2.4. Процесс создания систем
- 2.5. Приобретение систем
- 3. Процесс создания программного обеспечения
- 3.1. Модели процесса создания программного обеспечения
- 3.2. Итерационные модели разработки программного обеспечения
- 3.3. Спецификация программного обеспечения
- 3.4. Проектирование и реализация программного обеспечения
- 3.5. Эволюция программных систем
- 3.6. Автоматизированные средства разработки программного обеспечения
- 4. Технологии производства программного обеспечения
- Часть II. Требования к программному обеспечению
- 5. Требования к программному обеспечению
- 5.1. Функциональные и нефункциональные требования
- 5.2. Пользовательские требования
- 5.3. Системные требования
- 5.4. Документирование системных требований
- 6. Разработка требований
- 6.1. Анализ осуществимости
- 6.2. Формирование и анализ требований
- 6.3. Аттестация требований
- 6.4. Управление требованиям
- 7. Матрица требований. Разработка матрицы требований
- Часть III. Моделирование программного обеспечения
- 8. Архитектурное проектирование
- 8.1. Структурирование системы
- 8.2. Модели управления
- 8.3. Модульная декомпозиция
- 8.4. Проблемно-зависимые архитектуры
- 9. Архитектура распределенных систем
- 9.1. Многопроцессорная архитектура
- 9.2. Архитектура клиент/сервер
- 9.3. Архитектура распределенных объектов
- 9.4. Corba
- 10. Объектно-ориентированное проектирование
- 10.1. Объекты и классы объектов
- 10.2. Процесс объектно-ориентированного проектирования
- 10.2.1. Окружение системы и модели ее использования
- 10.2.2. Проектирование архитектуры
- 10.2.3. Определение объектов
- 10.2.4. Модели архитектуры
- 10.2.5. Специфицирование интерфейсов объектов
- 10.3. Модификация системной архитектуры
- 11. Проектирование систем реального времени
- 11.1. Проектирование систем реального времени
- 11.2. Управляющие программы
- 11.3. Системы наблюдения и управления
- 11.4. Системы сбора данных
- 12. Проектирование с повторным использованием компонентов
- 12.1. Покомпонентная разработка
- 12.2. Семейства приложений
- 12.3. Проектные паттерны
- 13. Проектирование интерфейса пользователя
- 13.1. Принципы проектирования интерфейсов пользователя
- 13.2. Взаимодействие с пользователем
- 13.3. Представление информации
- 13.4. Средства поддержки пользователя
- 13.5. Оценивание интерфейса
- Часть IV. Технологии разработки программного обеспечения
- 14. Жизненный цикл программного обеспечения: модели и их особенности
- 14.1. Каскадная модель жизненного цикла
- 14.2. Эволюционная модель жизненного цикла
- 14.2.1. Формальная разработка систем
- 14.2.2. Разработка программного обеспечения на основе ранее созданных компонентов
- 14.3. Итерационные модели жизненного цикла
- 14.3.1 Модель пошаговой разработки
- 14.3.2 Спиральная модель разработки
- 15. Методологические основы технологий разработки программного обеспечения
- 16. Методы структурного анализа и проектирования программного обеспечения
- 17. Методы объектно-ориентированного анализа и проектирования программного обеспечения. Язык моделирования uml
- Часть V. Письменная коммуникация. Документирование проекта Программного обеспечения
- 18. Документирование этапов разработки программного обеспечения
- 19. Планирование проекта
- 19.1 Уточнение содержания и состава работ
- 19.2 Планирование управления содержанием
- 19.3 Планирование организационной структуры
- 19.4 Планирование управления конфигурациями
- 19.5 Планирование управления качеством
- 19.6 Базовое расписание проекта
- 20. Верификация и аттестация программного обеспечения
- 20.1. Планирование верификации и аттестации
- 20.2. Инспектирование программных систем
- 20.3. Автоматический статический анализ программ
- 20.4. Метод "чистая комната"
- 21. Тестирование программного обеспечения
- 21.1. Тестирование дефектов
- 21.1.1. Тестирование методом черного ящика
- 21.1.2. Области эквивалентности
- 21.1.3. Структурное тестирование
- 21.1.4. Тестирование ветвей
- 21.2. Тестирование сборки
- 21.2.1. Нисходящее и восходящее тестирование
- 21.2.2. Тестирование интерфейсов
- 21.2.3. Тестирование с нагрузкой
- 21.3. Тестирование объектно-ориентированных систем
- 21.3.1. Тестирование классов объектов
- 21.3.2. Интеграция объектов
- 21.4. Инструментальные средства тестирования
- Часть VI. Управление проектом программного обеспечения
- 22. Управление проектами
- 22.1. Процессы управления
- 22.2. Планирование проекта
- 22.3. График работ
- 22.4. Управление рисками
- 23. Управление персоналом
- 23.1. Пределы мышления
- 23.1.1. Организация человеческой памяти
- 23.1.2. Решение задач
- 23.1.3. Мотивация
- 23.2. Групповая работа
- 23.2.1. Создание команды
- 23.2.2. Сплоченность команды
- 23.2.3. Общение в группе
- 23.2.4. Организация группы
- 23.3. Подбор и сохранение персонала
- 23.3.1. Рабочая среда
- 23.4. Модель оценки уровня развития персонала
- 24. Оценка стоимости программного продукта
- 24.1. Производительность
- 24.2. Методы оценивания
- 24.3. Алгоритмическое моделирование стоимости
- 24.3.1. Модель сосомо
- 24.3.2. Алгоритмические модели стоимости в планировании проекта
- 24.4. Продолжительность проекта и наем персонала
- 25. Управление качеством
- 25.1. Обеспечение качества и стандарты
- 25.1.1. Стандарты на техническую документацию
- 25.1.2. Качество процесса создания программного обеспечения и качество программного продукта
- 25.2. Планирование качества
- 25.3. Контроль качества
- 25.3.1. Проверки качества
- 25.4. Измерение показателей программного обеспечения
- 25.4.1. Процесс измерения
- 25.4.2. Показатели программного продукта
- 26. Надежность программного обеспечения
- 26.1. Обеспечение надежности программного обеспечения
- 26.1.1 Критические системы
- 26.1.2. Работоспособность и безотказность
- 26.1.3. Безопасность
- 26.1.4. Защищенность
- 26.2. Аттестация безотказности
- 26.3. Гарантии безопасности
- 26.4. Оценивание защищенности программного обеспечения
- 27. Совершенствование производства программного обеспечения
- 27.1. Качество продукта и производства
- 27.2. Анализ и моделирование производства
- 27.2.1. Исключения в процессе создания по
- 27.3. Измерение производственного процесса
- 27.4. Модель оценки уровня развития
- 27.4.1. Оценивание уровня развития
- 27.5. Классификация процессов совершенствования