logo search

4.2.1. Повышение точности путем усреднения результатов измерений

Рассмотрим некоторое средство измерений, например, измерительный модуль аналогового ввода NL-8AI для измерения и ввода в компьютер значений напряжения   (рис. 4.4). В общем случае на датчик, линию связи между датчиком и модулем и сам модуль действуют электромагнитные помехи и собственные шумы операционных усилителей, АЦП, резисторов, микропроцессорной части модуля и т. п. [Денисенко, Денисенко]. Мы не будем рассматривать помехи, действующие на объект измерений, поскольку он не входит в состав измерительного канала.

Рис. 4.4. Модуль ввода измеряет физическую величину   и выдает случайную величину 

Указанные причины приводят к тому, что результат измерения становится случайной величиной, значение которой изменяется от измерения к измерению.Случайная величина   может быть описана некоторой функцией распределения c математическим ожиданием   и среднеквадратическим отклонением  , которое принимается за случайную составляющую погрешности измерительного прибора. Дисперсия случайной величины  .

Погрешность средства измерений определяется изготовителем и указывается в эксплуатационной документации. В величину погрешности входит как систематическая, так и случайная составляющая. Если случайная составляющая превышает 10% от систематической, то она указывается отдельно (ГОСТ 8.009 [ГОСТ]). В некоторых случаях случайная составляющая указывается с помощью автокорреляционной функции или спектральной плотности мощности.

Случайная составляющая погрешности может быть снижена путем усреднения результатов многократных измерений. Если в составе погрешности преобладает систематическая компонента, то усреднение не приводит к повышению точности. О наличии случайной составляющей можно судить по рассеянию результатов однократных измерений.

Предположим, что с помощью измерительного модуля выполнено   измерений, в результате которых получены значения  . Усреднение результатов измерений выполняется по формуле среднего арифметического

.

(4.39)

Однако   также является случайной величиной, поскольку, выполняя несколько серий измерений и усредняя каждую из их, мы получим отличающиеся друг от друга средние значения   для каждой серии. Но   будет иметь меньшую дисперсию (среднеквадратическое отклонение), чем измерительный прибор. Покажем это.

Будем считать, что результаты измерений   являются независимыми случайными величинами. Тогда дисперсия их среднего арифметического будет равна

(4.40)

откуда

,

(4.41)

поскольку  .

В (4.40) использованы два свойства оператора дисперсии: а) дисперсия произведения случайной величины и константы равна дисперсии случайной величины, умноженной на квадрат константы и б) дисперсия суммы случайных величин равна сумме дисперсий каждой из них [Гмурман]. Кроме того, считается, что все измерения выполнены одним и тем же прибором, т.е. дисперсии всех измерений одинаковы и равны  , а случайные величины являются некоррелированными.

Докажем первое из использованных свойств. По определению дисперсии   и математического ожидания   случайной величины 

.

(4.42)

Поэтому, умножая   на константу  , получим:  .

Докажем теперь, что дисперсия суммы случайных величин равна сумме их дисперсий. Для этого сначала докажем, что математическое ожидание суммы случайных величин равно сумме их математических ожиданий, т.е.

.

(4.43)

Сумма случайных величин   - это такая случайная величина, которая принимает все возможные комбинации сумм случайных величин   и  , т.е.  . Поэтому по определению математического ожидания

. Аналогичное соотношение для   случайных величин можно доказать путем попарной группировки случайных величин. Формула (4.43) доказана.

Выведем еще вспомогательное равенство, связывающее дисперсию случайной величины с математическим ожиданием. Пользуясь определением дисперсии (4.42), получим:  .

Поскольку  , получим

.

(4.44)

Пользуясь соотношениями (4.43) и (4.44), получим дисперсию суммы двух случайных величин в виде .

Итак, усреднение   некоррелированных измерений (см. (3.2)) позволяет уменьшить погрешность результата в   раз. Однако это утверждение справедливо при соблюдении нескольких условий, выполнимость которых довольно трудно проверить на практике.

Во-первых, усреднение дает эффект только для случайной составляющей погрешности. Погрешность измерений перестает уменьшаться, когда   становится настолько малой, что суммарная погрешность определяется систематической составляющей.Систематическая погрешность складывается из нелинейности АЦП и операционных усилителей, температурной зависимости напряжения смещения нуля и коэффициента передачи измерительного канала (температурно-зависимые погрешности учитываются как дополнительные), низкочастотных шумов, у которых время автокорреляции больше времени выполнения серии повторных измерений (к ним относится, в частности, "старение" элементов), динамической погрешности. Практически редко удается снизить общую погрешность измерений более чем в 2...3 раза с помощью усреднения.

Во-вторых, результаты измерений должны быть статистически независимы, т.е. интервал времени между соседними измерениями должен быть много больше времени автокорреляции случайной погрешности. Посмотрим на рис. 4.5: если при белом шуме средние значения за интервал времени   и   равны между собой (внизу), то при коррелированном шуме - не равны (вверху). К примеру, усреднение 100 измерений в течение 10 с не может скомпенсировать компоненты шума, спектр которых лежит ниже 0,1 Гц.

В частности, требование статистической независимости измерений не выполняется также в случае, когда действует искусственная помеха, делающая шум цветным (коррелированным), например, помеха от сотового передатчика на крыше здания, от радиотелефона, из сети 50 Гц, от сварочного аппарата, от молнии, от внутренних генераторов измерительного прибора, от электродрели и т. п. В этих случаях усреднение также ослабляет помеху, но уже не в   раз, подробнее см. следующий параграф.

Описанный эффект имеет место только для тех законов распределения случайной величины, для которых существует понятие среднего и среднеквадратического отклонения. Например, для распределения Коши интегралы, дающие названные определения, расходятся [Косарев].

Особо следует отметить, что как систематическая, так и случайная составляющая погрешности средств измерений являются случайными величинами. Однако между ними имеется принципиальное различие. Систематическая погрешность является случайной на множестве средств измерений, но детерминированной для каждого образца из множества. Поэтому систематическую погрешность невозможно уменьшить путем многократных измерений одним и тем же прибором, но можно уменьшить, усредняя результаты, полученные измерением с помощью множества средств измерений одного типа. Случайная же погрешность является случайной на множестве результатов измерений одним и тем средством измерений и поэтому ее можно уменьшить путем усреднения результатов многократных измерений.

В отличие от погрешности, разрешающая способность не зависит от величины систематической погрешности и поэтому может быть увеличена существенно. Она может стать даже меньше величины младшего значащего разряда АЦП при условии, если стабильность его уровней позволяет это сделать. На этом эффекте основан принцип действия дельта-сигма АЦП.

Если в паспорте на средство измерения не указана величина случайной составляющей погрешности, ее можно оценить по результатам измерений [Орнатский]:

,

(4.45)

где коэффициент   зависит от количества измерений  . При  >60 он равен единице, при  <60 о выборе этого коэффициента см. в книге [Орнатский].

Вопросам повышения точности путем многократных измерений посвящен ГОСТ 8.207-76 [ГОСТ].