logo

4.4.7. Нахождение итоговой погрешности

После суммирования погрешностей по группам, как это было описано выше, результат измерения обычно выражают в виде

,

(4.109)

где   - измеренное значение;   - сумма всех погрешностей, которые складывались алгебраически, т.е. детерминированных погрешностей. Детерминированные погрешности могут быть прибавлены к измеренной величине в качестве поправки;   - сумма всех случайных погрешностей, которые складывались геометрически, в том числе с учетом корреляционных связей:

,

(4.110)

где   - сумма всех систематических погрешностей измерительного канала;   - сумма всех случайных погрешностей;   - сумма всех дополнительных погрешностей;   - сумма всех случайных составляющих методических погрешностей, включая погрешность программного обеспечения (см. раздел "Погрешность метода измерений"). Детерминированные составляющие методических погрешностей учитываются в слагаемом  .

Вместо среднеквадратического отклонения может быть указан предел допустимых значений. Однако должно быть явно указано, какая именно оценка погрешности использована, поскольку доверительные вероятности для предела допустимых значений (единица) и для среднеквадратического отклонения (0,68) существенно отличаются.

Случайная, систематическая и дополнительная погрешности могут быть указаны раздельно. МИ 1317-2004 [МИ] рекомендует "вместе с результатом измерений представлять характеристики его погрешности или их статистические оценки". Поэтому состав характеристик погрешности может быть выбран в каждом конкретном случае индивидуально, в зависимости от смысла решаемой задачи.

При выполнении многократных измерений результат измерений должен содержать также указание на количество измерений, использованных при усреднении и интервал времени, в течение которого были выполнены измерения [МИ].

Поскольку выражение для суммы дисперсий случайных величин (4.25) получено независимо от закона распределения, геометрическое суммирование погрешностей дает правильное значение дисперсии независимо от законов распределения отдельных составляющих. Однако при этом ничего нельзя сказать о функции распределения суммарной погрешности, в том числе о надежности (доверительной вероятности) полученного результата. Тем не менее, поскольку при суммировании пяти и более погрешностей закон распределения суммы близок к нормальному независимо от законов распределения отдельных слагаемых [Орнатский], то, зная среднеквадратическое отклонение итоговой погрешности, можно использовать нормальный закон распределения для указания доверительного интервала и доверительной вероятности результата измерений.