logo

Настройка параметров регулятора по методу Зиглера и Никольса

Зиглер и Никольс предложили два метода настройки ПИД-регуляторов [Ziegler]. Один из них основан на параметрах отклика объекта на единичный скачок; второй метод основан на частотных характеристиках объекта управления.

Табл. 27. Формулы для расчета коэффициентов регулятора по методу Зиглера-Никольса

Расчет по отклику на скачок

Расчет по частотным параметрам

Регулятор

П

-

-

-

-

ПИ

-

-

ПИД

Примечание. Система обозначений параметров регулятора и формулы соответствует уравнению (5.36).

Для расчета параметров ПИД-регулятора по первому методу Зиглера-Никольса используются всего два параметра:   и   (см. рис. 5.29и пояснения к нему в тексте). Формулы для расчета коэффициентов ПИД-регулятора сведены в табл. 27.

ПИД_Зиглер-Никольс _настройка.tif

Рис. 5.86. Результат настройки ПИД-регулятора по методу Зиглера-Никольса для объекта второго порядка с задержкой:  , .

В качестве примера на рис. 5.86 приведен отклик на единичный скачок системы с объектом второго порядка и ПИД-регулятором, настроенным по табл. 27 и переходная характеристика самого объекта управления. Из характеристики объекта получены значения   и  . По табл.1 для этих значений   и   можно найти коэффициенты ПИД регулятора:  ,  ,  . На рис. 5.86 приведен также отклик на единичный скачок той же системы при параметрах  ,  ,  , полученных путем ручной подстройки. Как видим, метод Зиглера-Никольса дает параметры, далекие от оптимальных. Это объясняется не только упрощенностью самого метода (он использует только 2 параметра для описания объекта), но и тем, что параметры регулятора в этом методе определялись Зиглером и Никольсом исходя из требования к декременту затухания, равному 4, что и дает медленное затухание процесса колебаний.

Метод Зиглера-Никольса никак не учитывает требования к запасу устойчивости системы, что является вторым его недостатком. Судя по медленному затуханию переходного процесса в системе, этот метод дает слишком малый запас устойчивости.

Второй метод Зиглера-Никольса (частотный метод) в качестве исходных данных для расчета использует частоту  , на которой сдвиг фаз в разомкнутом контуре достигает 180˚, и модуль коэффициента передачи объекта на этой частоте  . О методике определении этих параметров см. раздел "Частотная идентификация в режиме релейного регулирования". Зная параметр  , сначала находят период собственных колебаний системы  , затем по табл.1 определяют параметры регулятора. Точность настройки регулятора и недостатки обоих методов Зиглера-Никольса одинаковы.