6.1.2. Архитектура
Архитектурой контроллера называют набор его основных компонентов и связей между ними. Типовой состав ПЛК включает центральный процессор, память, сетевые интерфейсы и устройства ввода-вывода (рис. 6.1). Иногда эта конфигурация дополняется устройством для программирования и пультом оператора, устройствами индикации, реже - принтером, клавиатурой, мышью или трекболом.
Процессорный модуль включает в себя микропроцессор (центральное процессорное устройство - ЦПУ), запоминающие устройства, часы реального времени и сторожевой таймер. Термины "микропроцессор" и "процессор" в настоящее время стали синонимами, поскольку все вновь выпускаемые процессоры выполняются в виде СБИС, т.е. являются микропроцессорами.
Основными характеристиками микропроцессора являются разрядность (в ПЛК используются 8-ми, 16-ти и 32-разрядные микропроцессоры), тактовая частота, архитектура, наличие операций с плавающей точкой, типы поддерживаемых портов ввода-вывода, температурный диапазон работоспособности и потребляемая мощность.
Производительность микропроцессоров с одной и той же архитектурой пропорциональна тактовой частоте. Большинство контроллеров используют микропроцессоры с сокращенным набором команд (RISC - Reduced Instruction Set Computing), в которых используется небольшое количество команд одинаковой длины и большое количество регистров. Сокращенный набор команд позволяет строить более эффективные компиляторы и конвейер процессора, способный за каждый такт выдавать результат исполнения очередной команды [Корнеев].
Для контроллеров, выполняющих интенсивную математическую обработку данных, важно наличие математического сопроцессора (вспомогательного процессора, выполняющего операции с плавающей точкой) или сигнальных процессоров, в которых операции типа Y=A*B+X выполняются за один такт. Сигнальные процессоры позволяют ускорить выполнение операций свертки или быстрого преобразования Фурье.
Емкость памяти определяет количество переменных (тегов), которые могут быть обработаны в процессе функционирования ПЛК. В микропроцессорах время доступа к памяти является одним из существенных факторов, ограничивающих быстродействие. Поэтому память делят на несколько уровней иерархии, в зависимости от частоты использования хранящихся в ней данных и быстродействия. Иерархия памяти относится к существенным характеристиками архитектуры процессора, поскольку она позволяет снизить отрицательное влияние медленной памяти на быстродействие микропроцессора. Основными типами памяти является постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ) и набор регистров. Регистры являются самыми быстродействующими элементами памяти, поскольку они используются арифметико-логическим устройством (АЛУ) для исполнения элементарных команд процессора. ПЗУ используют для хранения редко изменяемой информации, такой, как операционная система, драйверы устройств, загрузчик, исполняемый модуль программы пользователя. ОЗУ используется для хранения данных, которые многократно изменяются в процессе работы контроллера, например, значения тегов, результаты промежуточных вычислений, диагностическая информация, массивы, выводимые на графики, данные для отображения на дисплее.
-
. Рис_6х_Архитектура_ПЛК.tif
Рис. 6.1. Типовая архитектура ПЛК
В качестве ПЗУ (или ROM - "Read Only Memory") обычно используется электрически стираемая перепрограммируемая память (EEPROM - "Electrically Erasable Programmable ROM". Разновидностью EEPROM является флэш-память, принцип действия которой основан на хранении заряда в конденсаторе, образованном плавающим затвором и подложкой МОП-транзистора. Особенностью флэш-памяти является ее энергонезависимость, т.е. сохраняемость данных при выключенном питании. Стирание и перезапись во флэш-памяти выполняется не отдельными ячейками, а большими блоками, поэтому она получила название, происходящее от английского "flash" - "вспышка" . Недостатком всех ПЗУ является низкое быстродействие.
Количество циклов записи информации во флэш-память ограничено и составляет несколько десятков тысяч раз. По конструктивному исполнению и интерфейсам флэш-память подразделяется на Compact Flash (CF), Memory Stick, Secure Digital (SD), MuliMediaCard (MMC), RS-MMC, SmartMedia Card (SMC), USB-flash. Флэш-память может быть впаяна в печатную плату или быть съемной.
В качестве ОЗУ современные микропроцессоры используют статическую память ( SRAM - Static Random Access Memory) и динамическую (DRAM - "Dynamic Random Access Memory"), SDRAM ("Synchronous DRAM"). SRAM выполняется на триггерах, информация в которых сохраняется неограниченно долго при наличии питания. В динамической памяти информация хранится на конденсаторах и поэтому DRAM требует периодической регенерации (перезарядки конденсаторов). К недостаткам триггерной памяти относится ее высокая стоимость, связанная с низкой плотностью компоновки триггеров на кристалле, и малое отношение емкости к цене. Достоинством является высокое быстродействие, достигающее гигагерц, в то время как память на конденсаторах не может работать на частотах выше сотен герц. Оба типа памяти (DRAM и SRAM) не могут сохранять информацию при отключении питания ПЛК. Поэтому некоторые типы ПЛК используют батарейное питание памяти для сохранения работоспособности системы автоматизации после кратковременного прерывания питания.
Моноблочные и модульные контроллеры используют, как правило, параллельную шину для обмена данными с модулями ввода-вывода, что позволяет на порядок повысить быстродействие их опроса по сравнению с последовательной шиной. Параллельные шины могут быть стандартными (ISA, PC/104, PCI, ComactPCI, VME, CXM) или частнофирменными. Последовательная шина контроллера (на основе интерфейса RS-485) используется для подключения к нему удаленных (распределенных) модулей ввода-вывода.
Программирование контроллеров малой мощности выполняется с помощью кнопок, расположенных на лицевой панели или с помощью переносного пульта для программирования. В качестве пульта в последнее время используется компьютер формата "ноутбук". Программирование мощных контроллеров выполняется с помощью персонального компьютера, на котором устанавливается специальное программное обеспечение, например CoDeSys или ISaGRAF (см. раздел "Программное обеспечение"), выполняющее трансляцию технологического языка стандарта МЭК 61131-3 в исполняемый код процессора, который загружается в ПЗУ ПЛК, например, через порт Ethernet.
Сторожевой таймер (Watchdog Timer - WDT) представляет собой счетчик, который считает импульсы тактового генератора и в нормальном режиме периодически сбрасывается (перезапускается) работающим процессором. Если процессор "зависает", то сигналы сброса не поступают в счетчик, он продолжает считать и при достижении некоторого порога вырабатывает сигнал "Сброс" для перезапуска "зависшего" процессора.
Часы реального времени (РВ) представляют собой кварцевые часы, которые питаются от батарейки и поэтому продолжают идти при выключенном ПЛК. Часы РВ используются, например, для управления уличным освещением в зависимости от времени суток, в системах охраны объектов и других случаях, когда необходима привязка данных или событий к астрономическому времени.
- Архитектура автоматизированной системы
- 1.1. Разновидности архитектур
- 1.1.1. Требования к архитектуре
- 1.1.2. Простейшая система
- 1.1.3. Распределенные системы автоматизации
- 1.1.4. Многоуровневая архитектура
- 1.2. Применение интернет-технологий
- 1.2.1. Проблемы и их решение
- 1.2.2. Основные понятия технологии интернета
- 1.2.3. Принципы управления через интернет
- 1.2.4. Микро веб-серверы
- 1.2.5. Примеры применения
- 1.3. Понятие открытой системы
- 1.3.1. Свойства открытых систем
- Модульность
- Платформенная независимость
- Взаимозаменяемость
- Интероперабельность (аппаратно-программная совместимость)
- Масштабируемость (наращиваемость)
- Интерфейс пользователя
- Программная совместимость
- 1.3.3. Достоинства и недостатки
- 1.4. Заключение к главе "Архитектура автоматизированных систем"
- Обзор публикаций
- 2. Промышленные сети и интерфейсы
- 2.1. Общие сведения о промышленных сетях
- 2.2. Модель osi
- 2.2.1. Физический уровень
- 2.2.2. Канальный уровень
- 2.2.3. Сетевой уровень
- 2.2.4. Транспортный уровень
- 2.2.5. Сеансовый уровень
- 2.2.6. Уровень представления
- 2.2.7. Прикладной уровень
- 2.2.8. Критика модели osi
- 2.3. Интерфейсы rs-485, rs-422 и rs-232
- 2.3.1. Принципы построения Дифференциальная передача сигнала
- "Третье" состояние выходов
- Четырехпроводной интерфейс
- Режим приема эха
- Заземление, гальваническая изоляция и защита от молнии
- 2.3.2. Стандартные параметры
- 2.3.3. Согласование линии с передатчиком и приемником
- 2.3.4. Топология сети на основе интерфейса rs-485
- 2.3.5. Устранение состояния неопределенности линии
- 2.3.6. Сквозные токи
- 2.3.7. Выбор кабеля
- 2.3.8. Расширение предельных возможностей
- 2.3.9. Интерфейсы rs-232 и rs-422
- 2.4. Интерфейс "токовая петля"
- Аналоговая "токовая петля"
- Цифровая "токовая тепля"
- 2.5. Hart-протокол
- Принципы построения
- Сеть на основе hart-протокола
- Адресация
- Команды hart
- Язык описания устройств ddl
- Разновидности hart
- 2.6.1. Физический уровень
- Электрические соединения в сети can
- Трансивер can
- 2.6.2. Канальный уровень
- Адресация и доступ к шине
- Достоверность передачи
- Передача сообщений
- Пауза между фреймами
- Фильтрация сообщений
- Валидация сообщений
- 2.6.3. Прикладной уровень: caNopen
- Коммуникационные модели
- 2.6.4. Электронные спецификации устройств caNopen
- 2.7.1. Физический уровень
- 2.7.2. Канальный уровень Profibus dp
- Коммуникационный профиль dp
- Передача сообщений
- 2.7.3. Резервирование
- 2.7.4. Описание устройств
- 2.8.1. Физический уровень
- 2.8.2. Канальный уровень
- Описание кадра (фрейма) протокола Modbus
- Структура данных в режиме rtu
- Структура Modbus rtu сообщения
- Контроль ошибок
- 2.8.3. Прикладной уровень
- Коды функций
- Содержание поля данных
- Список кодов Modbus
- 2.9. Промышленный Ethernet
- 2.9.1. Отличительные особенности
- 2.9.2. Физический уровень
- Методы кодирования
- Доступ к линии передачи
- Коммутаторы
- 2.9.3. Канальный уровень
- 2.10. Протокол dcon
- 2.11. Беспроводные локальные сети
- 2.11.1. Проблемы беспроводных сетей и пути их решения
- Зависимость плотности мощности от расстояния
- Влияние интерференции волн
- Источники помех
- Широкополосная передача
- Методы модуляции несущей
- Другие особенности беспроводных каналов
- Методы уменьшение количества ошибок в канале
- Передача сообщений без подтверждения о получении
- Использование пространственного разнесения антенн
- Вопросы безопасности
- Физический и канальный уровень
- Модель передачи данных
- Структура фреймов
- Сетевой уровень
- Уровень приложений
- Физический и канальный уровень
- Архитектура сети Wi-Fi
- 2.11.5. Сравнение беспроводных сетей
- 2.12. Сетевое оборудование
- 2.12.1. Повторители интерфейса
- 2.12.2. Концентраторы (хабы)
- 2.12.3. Преобразователи интерфейса
- Преобразователь rs-232 - rs-485/422
- Преобразователь rs-232 в оптоволоконный интерфейс
- Преобразователь usb в rs-232, rs-485, rs-422
- 2.12.4. Адресуемые преобразователи интерфейса
- 2.12.5. Межсетевые шлюзы
- 2.12.6. Другое сетевое оборудование
- Маршрутизаторы
- Сетевые адаптеры
- Коммутаторы
- Мультиплексоры
- Межсетевой экран
- 2.12.7. Кабели для промышленных сетей
- 2.13. Заключение к главе "Промышленные сети и интерфейсы"
- 3. Защита от помех
- 3.1. Источники помех
- 3.1.1. Характеристики помех
- 3.1.2. Помехи из сети электроснабжения
- 3.1.3. Молния и атмосферное электричество
- 3.1.4. Статическое электричество
- 3.1.5. Помехи через кондуктивные связи
- 3.1.6. Электромагнитные помехи
- 3.1.7. Другие типы помех
- 3.2. Заземление
- 3.2.1. Определения
- 3.2.2. Цели заземления
- 3.2.3. Защитное заземление зданий
- 3.2.4. Автономное заземление
- 3.2.5. Заземляющие проводники
- 3.2.6. Модель «земли»
- 3.2.7. Виды заземлений
- Силовое заземление
- Аналоговая и цифровая земля
- «Плавающая» земля
- 3.3. Проводные каналы передачи сигналов
- 3.3.1. Источники сигнала
- 3.3.2. Приемники сигнала
- 3.3.3. Прием сигнала заземленного источника
- 3.3.4. Прием сигнала незаземленных источников
- 3.3.5. Дифференциальные каналы передачи сигнала
- Токовый дифференциальный канал
- Балансный канал
- 3.5. Методы экранирования и заземления
- 3.5.1. Гальванически связанные цепи
- 3.5.2. Экранирование сигнальных кабелей
- 3.5.3. Гальванически развязанные цепи
- 3.5.4. Экраны кабелей на электрических подстанциях
- 3.5.5. Экраны кабелей для защиты от молнии
- 3.5.6. Заземление при дифференциальных измерениях
- 3.5.7. Интеллектуальные датчики
- 3.5.8. Монтажные шкафы
- 3.5.9. Распределенные системы управления
- 3.5.10. Чувствительные измерительные цепи
- 3.5.11. Исполнительное оборудование и приводы
- Заземление в промышленных сетях
- 3.5.12. Заземление на взрывоопасных объектах
- 3.6. Гальваническая развязка
- 4. Измерительные каналы
- 4.1. Основные понятия
- 4.1.1. Определения основных терминов
- 4.1.2. Точность, разрешающая способность и порог чувствительности
- 4.1.3. Функция автокорреляции
- 4.1.4. Коэффициент корреляции
- 4.1.5. Точечные и интервальные оценки погрешности
- 4.1.6. Погрешность метода измерений
- 4.1.7. Погрешность программного обеспечения
- 4.1.8. Достоверность измерений
- 4.2. Многократные измерения
- 4.2.1. Повышение точности путем усреднения результатов измерений
- 4.2.2. Точность и продолжительность измерений
- 4.3 Динамические измерения
- 4.3.1. Теорема Котельникова
- 4.3.2. Фильтр и динамическая погрешность
- Измерение при синусоидальном сигнале
- Измерение при входном сигнале "единичный скачок"
- Измерение сигнала произвольной формы
- 4.3.3. Sinc-фильтр в измерительных модулях ввода
- 4.3.4. Алиасные частоты, антиалиасные фильтры
- 4.4. Суммирование погрешностей измерений
- 4.4.1. Исходные данные для расчета
- 4.4.2. Методы суммирования погрешностей
- 4.4.3. Систематические погрешности
- 4.4.4. Случайные погрешностей
- 4.4.5. Дополнительные погрешности
- 4.4.6. Динамические погрешности
- 4.4.7. Нахождение итоговой погрешности
- Нахождение погрешности измерительного канала в условиях недостатка исходных данных
- 4.5. Заключение к главе "Измерительные каналы"
- Обзор литературы
- 5.1. Идентификация моделей динамических систем
- 5.1.1. Модели объектов управления
- Модель первого порядка
- Модель второго порядка
- Модель в переменных состояния
- Модели интегрирующих процессов
- 5.1.2. Выбор тестовых сигналов
- Единичный скачок
- Прямоугольный импульс
- 5.1.4. Идентификация в замкнутом и разомкнутом контуре
- Идентификация в разомкнутом контуре
- Прямая пассивная идентификация в замкнутом контуре
- Косвенная идентификация в замкнутом контуре
- Прямая активная идентификация в замкнутом контуре
- 5.1.5. Аналитическая идентификация
- Идентификация модели первого порядка по средней длительности переходного процесса
- Метод двойного прямоугольного импульса
- Использование результатов частотной идентификации
- 5.1.6. Методы минимизации критериальной функции
- 5.2. Классический пид-регулятор
- 5.3.4. Регулятор отношений
- 5.3.5. Регулятор с внутренней моделью
- 5.3.6. Эквивалентные преобразования структур пид-регуляторов
- Предиктор Смита
- 5.4. Особенности реальных регуляторов
- 5.4.1. Погрешность дифференцирования и шум
- 5.4.2. Интегральное насыщение
- Ограничение скорости нарастания входного воздействия
- Алгоритмический запрет интегрирования
- Компенсация насыщения с помощью дополнительной обратной связи
- Условное интегрирование
- Интегратор с ограничением
- 5.4.3. Запас устойчивости и робастность
- Критерий Найквиста
- Частотный критерий устойчивости
- Функции чувствительности
- Робастность
- 5.4.4. Сокращение нулей и полюсов
- 5.4.5. Безударное переключение режимов регулирования
- 5.4.6. Дискретная форма регулятора
- Переход к конечно-разностным уравнениям
- Уравнение цифрового пид-регулятора
- Инкрементная форма цифрового пид-регулятора
- 5.5. Расчет параметров
- 5.5.1. Качество регулирования
- Ослабление влияния внешних возмущений
- Ослабление влияния шумов измерений
- Робастность к вариации параметров объекта
- Критерии качества во временной области
- Частотные критерии качества
- 5.5.2. Выбор параметров регулятора
- Настройка параметров регулятора по методу Зиглера и Никольса
- Метод chr
- 5.5.3. Ручная настройка, основанная на правилах
- 5.5.4. Методы оптимизации
- 5.6. Автоматическая настройка и адаптация
- 5.6.1. Основные принципы
- 5.6.2. Табличное управление
- 5.6.3. Обзор коммерческих продуктов
- 5.6.4. Программные средства настройки
- 5.7. Нечеткая логика, нейронные сети и генетические алгоритмы
- 5.7.1. Нечеткая логика в пид-регуляторах
- Принципы построения нечеткого пи-регулятора
- Применение нечеткой логики для подстройки коэффициентов пид-регулятора
- 5.7.2. Искусственные нейронные сети
- 5.7.3. Генетические алгоритмы
- 5.7.4. Обзор публикаций
- 5.8. Заключение к главе "пид-регуляторы"
- 6. Контроллеры для систем автоматизации
- 6.1. Программируемые логические контроллеры
- 6.1.1. Типы плк
- 6.1.2. Архитектура
- Процессорный модуль
- Источник питания
- 6.1.3. Характеристики
- 6.1.4. Пример плк
- Характеристики процессора:
- Характеристики плк:
- Программное обеспечение
- 6.1.5. Устройства сбора данных
- 6.2. Компьютер в системах автоматизации
- 6.2.1. Компьютер в качестве контроллера
- 6.2.2. Компьютер для общения с оператором
- 6.2.3. Промышленные компьютеры
- 6.3. Устройства ввода-вывода
- 6.3.1. Ввод аналоговых сигналов
- Структура модулей ввода
- Команды управления модулем
- 6.3.2. Модули ввода тока и напряжения Потенциальный вход
- Токовый вход
- 6.3.3. Термопары
- Погрешность измерений
- 6.3.4. Термопреобразователи сопротивления
- Двухпроводная схема измерений
- Четырехпроводная схема измерений
- Трехпроводная схема измерений
- Погрешность измерений
- 6.3.5. Тензорезисторы
- Датчики на основе тензорезисторов
- Измерения с помощью тензодатчиков
- Влияние сопротивления соединительных проводов
- Составляющие погрешности измерения
- 6.3.6. Вывод аналоговых сигналов
- 6.3.7. Ввод дискретных сигналов
- Ввод дискретных сигналов 220 в
- 6.3.8. Вывод дискретных сигналов
- 6.3.9. Ввод частоты, периода и счет импульсов
- 6.3.10. Модули управления движением
- 6.4. Заключение
- 7. Автоматизация опасных промышленных объектов
- 7.1. Искробезопасная электрическая цепь
- 7.2. Блоки искрозащиты
- 7.3. Правила применения искробезопасных устройств
- 7.4. Функциональная безопасность
- 7.5. Выбор аппаратных средств
- Виды опасных промышленных объектов
- Взрывоопасные производственные объекты
- 7.5.2. Классификация взрывоопасных зон
- 7.5.3. Классификация взрывоопасности технологических блоков
- 7.5.4. Взрывопожарная и пожарная опасность
- 7.5.5. Требования к техническим устройствам
- 7.5.6. Маркировка взрывозащищенного оборудования
- Маркировка и выбор оборудования, работающего в среде газа
- Маркировка и выбор оборудования для среды пыли
- 7.5.7. Монтаж взрывоопасного технологического оборудования
- 7.6. Заключение к главе "Автоматизация опасных производственных объектов"
- 8. Аппаратное резервирование
- 8.1. Основные понятия и определения
- 8.2. Резервирование плк и устройств ввода-вывода
- 8.2.1. Общие принципы резервирования
- Системы с голосованием
- Резервирование замещением
- Общее и поэлементное резервирование
- 8.2.2. Модули ввода и датчики
- Резервирование аналоговых модулей ввода и датчиков
- Резервирование датчиков и модулей ввода дискретных сигналов
- 8.2.3. Резервирование модулей вывода
- Резервирование аналоговых модулей вывода
- Резервирование модулей дискретного вывода и нагрузки
- 8.2.4. Резервирование процессорных модулей
- Горячее резервированиезамещением
- Резервирование методом голосования
- Тестирование процессорного модуля
- 8.2.5. Резервирование источников питания
- 8.3. Резервирование промышленных сетей
- 8.3.1. Сети Profibus, Modbus, can
- 8.3.2. Сети Ethernet
- Метод агрегирования
- Протокол stp и его модификации
- Метод физического кольца
- Полное резервирование сети
- 8.3.3. Резервирование беспроводных сетей
- 8.4. Оценка надежности резервированных систем
- 8.5. Заключение к главе «Аппаратное резервирование»
- 9. Программное обеспечение
- 9.1. Развитие программных средств автоматизации
- Разделение труда по созданию программных средств автоматизации
- Заказные и специализированные программные средства автоматизации
- 9.1.1. Графическое программирование
- 9.1.2. Графический интерфейс
- 9.1.3. Открытость программного обеспечения
- 9.1.4. Связь с физическими устройствами
- 9.1.5. Базы данных
- 9.1.6. Операционные системы реального времени
- 9.2. Орс сервер
- 9.2.1. Обзор стандарта орс
- 9.2.2. Орс da сервер
- 9.2.3. Opc hda сервер
- 9.2.4. Спецификация opc ua
- Архитектура, ориентированная на сервисы
- Независимость от com, dcom
- Безопасность
- Достоинства нового стандарта
- Концепция системы на базе opc ua
- 9.2.5. Орс da сервер в среде ms Excel
- Упрощенный интерфейс EasyAccess
- 9.2.6. Применение орс сервера с Matlab и LabView
- 9.3. Системы программирования на языках мэк 61131-3
- 9.3.1. Язык релейно-контактных схем, ld
- 9.3.2. Список инструкций, il
- 9.3.3. Структурированный текст, st
- 9.3.4. Диаграммы функциональных блоков, fbd
- 9.3.5. Функциональные блоки стандартов мэк 61499 и мэк 61804
- 9.3.6. Последовательные функциональные схемы, sfc
- 9.3.7. Программное обеспечение
- 9.4. Пользовательский интерфейс, scada-пакеты
- 9.4.1. Функции scada
- Разработка человеко-машинного интерфейса
- Scada как система диспетчерского управления
- Scada как часть системы автоматического управления
- Хранение истории процесса
- Безопасность scada
- Общесистемные функции
- 9.4.2. Свойства scada
- Инструментальные свойства
- Эксплуатационные свойства
- Степень открытости
- Экономическая эффективность
- 9.4.3. Программное обеспечение
- 9.5. Заключение к главе "Программное обеспечение"