2.5.1. Основные понятия о дифференциальных уравнениях()
Многие серьезные физические и научно-технические задачи (особенно относящиеся к анализу динамических систем и к их математическому моделированию) базируются на решении систем дифференциальных уравнений (ДУ).
Вначале рассмотрим одно дифференциальное уравнение dy/dx=f(x,y) или y’= f(x,y). Характер его решения в виде зависимости y(x) зависит от функции f(x,y). Если заменить бесконечно малые dy и dx на малые, но конечные, приращения x и y, то можно свести дифференциальное уравнение к приближенному конечно-разностному уравнению y/x = f(x,y). Если известно начальное значение x0 и соответствующее значение y0=y(x0), то можно вычислить приращение y = f(x,y)x и затем найти y1 = y0 + y.
Продолжая действовать таким образом, мы можем найти для ряда значений xi значения yi, т.е. решить дифференциальное уравнение численным методом и получить таблицу значений xi и yi. Этот простейший метод получил название метода Эйлера. Существуют гораздо более совершенные методы решения дифференциальных уравнений, например методы Рунге-Кутта, прогноза и коррекции и др. Конечно-разностные методы также завоевали свое место, например, для наглядного решения уравнений математической физики (см. Главу 4).
Дифференциальные уравнения могут быть линейными и нелинейными. Линейные дифференциальные уравнения имеют аналитические решения, но получение их под силу лишь опытным математикам. Здесь ценными оказываются СКМ, имеющие средства для аналитического решения дифференциальных уравнений. Это именно тот «запретный плод», который оказывается в руках не слишком озабоченных математикой пользователей ПК, в том числе гуманитариев. А запретный плод, как известно, самый сладкий.
Нелинейные ДУ и системы с такими уравнениями, как правило, не имеют аналитических методов решения, и здесь особенно важна возможность их решения численными методами. В большинстве случаев желательно представление решений в графическом виде. Эти возможности и предоставляют многие СКМ, например Derive, Mathematica и Maple. К сожалению, возможности Mathcad в аналитическом решении ДУ гораздо меньше, чем у указанных СКМ. И такие методы мы не рассматриваем.
Системы из обыкновенных дифференциальных уравнений (ОДУ) для их численного решения в среде Mathcad должны быть представлены в форме Коши с указанием начальных условий:
.
Здесь первая система задает начальные условия, а вторая представляет систему ОДУ. Нетрудно заметить, что эти системы можно представить в векторном виде:
.
Отсюда следует важный вывод — решение системы ОДУ в форме Коши осуществляется аналогично решению одиночного ДУ, но должно быть организовано в векторной форме. При этом добавление очередного уравнения не увеличивает числа уравнений в векторной их записи.
Дифференциальные уравнения n-го порядка:
y(n) = f(x,y,y',y'', …,y(n–1)),
где y(x0) = y0.0 , y'(x0) = y0,1 y''(x0) = y0,2,…, y(n–1)(x0) = y0,n–1, можно свести к системе ДУ первого порядка. Для этого введем следующие обозначения:
y1(x) = y(x), y2(x) = y'(x), … , yn(x) = y(n–1)(x),
y0,0 = y(x0), y0,1 = y'(x0), … , y0,n–1 = y(n–1)(x0).
Теперь можно записать:
.
В таком виде ДУ n-го порядка может решаться стандартными средствами численного решения систем ОДУ, входящими в систему Mathcad.
- Новые информационные технологии
- Часть 3. Основы математики и математическое моделирование Учебное пособие
- Введение
- Глава 1. Основы компьютерной математики
- 1.1. Математика и ее средства
- 1.1.1. Аксиоматический метод и структуры математики
- 1.1.2. Компьютерная математика как часть математики
- 1.1.3. Классификация средств компьютерной математики
- 1.1.4. Структура систем компьютерной математики
- 1.1.5. Обзор систем компьютерной математики
- 1.2. Система компьютерной математикиMathcad
- 1.2.1. Состав системы Mathcad и ее запуск
- 1.2.2. Основы работы с системой Mathcad 2001
- 1.2.3. Работа с текстовым редактором
- 1.2.4. Работа с формульным редактором
- 1.2.5. Операции вывода и присваивания
- 1.2.6. Шаблоны математических операторов и символов
- 1.2.7. Ошибки и прерывание вычислений
- 1.3. Простые типы данных
- 1.3.1. Числовые данные
- 1.3.2. Вещественные числа и их форматы
- 1.3.3. Комплексные числа
- 1.3.4. Строковые данные
- 1.3.5. Символьные данные и выражения
- 1.4. Сложные типы данных
- 1.4.1. Множества и подмножества
- 1.4.2. Массивы
- 1.4.3. Векторы и матрицы
- 1.5. Константы, переменные, операторы и функции
- 1.5.1. Числовые константы
- 1.5.2. Строковые константы
- 1.5.3. Переменные
- 1.5.4. Операторы
- 1.5.5. Выражения и функции
- 1.6. Основы графической визуализации вычислений
- 1.6.1. Понятия об основных геометрических объектах
- 1.6.2. Построение графиков функций одной переменной
- 1.6.3. Построение графиков поверхностей
- 1.7. Средства программирования в системеMathcad
- 1.7.1. Задание операторов пользователя
- 1.7.2. Задание программных модулей
- 1.7.3. Особенности применения программных модулей
- Методические указания
- 2.1.2. Вычисление произведений
- 2.1.3. Вычисление пределов
- 2.3. Вычисление производных и интегралов
- 2.3.1. Определение производной и полного дифференциала
- 2.3.2. Вычисление производных
- 2.3.3. Определение интегралов
- 2.3.4. Вычисление интегралов
- 2.4. Решение уравнений и систем уравнений
- 2.4.1. Простое линейное уравнение и его решение
- 2.4.2. Решение систем линейных уравнений
- 2.4.5. Поиск всех корней степенного многочлена()
- 2.4.6. Решение систем нелинейных уравнений()
- 2.4.7. Реализация итерационных вычислений
- 2.5. Решение дифференциальных уравнений()
- 2.5.1. Основные понятия о дифференциальных уравнениях()
- 2.5.2. Решение систем оду()
- 2.5.3. Решение оду с помощью функции odesolve()
- 2.5.4. Решение жестких систем оду()
- 2.6. Решение задач оптимизации и линейного программирования
- 2.6.1. Основные понятия оптимизации
- 2.6.2. Пример оптимизации раскроя железного листа
- 2.6.3. Поиск минимума тестовой функции Розенброка
- 2.6.4. Функции maximize и minimize системы Mathcad
- 2.7. Разложение функций в ряды
- 2.7.1. Определение рядов Тейлора и Маклорена
- 2.7.2. Разложение в ряд Тейлора в системе Mathcad
- 2.7.3. Ряды Фурье()
- 2.7.4. Быстрые прямое и обратное преобразования Фурье()
- 2.7.5. Примеры преобразований Фурье()
- 2.7.6. Альтернативные преобразования Фурье()
- 2.8. Табличная интерполяция и аппроксимация
- 2.8.1. Теоретические основы интерполяции и экстраполяции
- 2.8.2. Интерполяция и аппроксимация по общей формуле Лагранжа
- 2.8.3. Полиномиальная интерполяция и аппроксимация
- 2.8.4. Кусочно-линейная и сплайновая аппроксимации в Mathcad
- 2.9. Статистическая обработка данных
- 2.9.1.Эксперименты, события и другие понятия статистики
- 2.9.2.Решение задач комбинаторики
- 2.9.3. Дискретные и непрерывные случайные величины
- 2.9.4. Законы распределения и статистические функции Mathcad
- 2.9.5. Регрессия и метод наименьших квадратов
- 2.9.6. Выполнение линейной регрессии в среде Mathcad
- 2.9.7. Полиномиальная регрессия в Mathcad
- 2.9.8. Проведение нелинейной регрессии()
- 2.9.9. Экстраполяция и предсказание
- 2.9.10. Сглаживание данных
- Методические указания
- 10 Главных вопросов
- Глава 3. Основы математического моделирования
- 3.1. Основные понятия моделирования
- 3.2. Основные виды моделей и их свойства
- 3.2.1. Основные виды моделей
- 3.2.2. Основные свойства моделей
- 3.3. Цели, принципы и технология моделирования
- 3.3.1. Цели моделирования
- 3.3.2. Основные принципы моделирования
- 3.3.3. Технология моделирования
- 3.3.4. Основные методы решения задач моделирования
- Оценка обусловленности вычислительной задачи – еще одно обязательное требование при выборе метода решения и построении математической модели.
- 3.3.5. Контроль правильности модели
- 3.4. Задачи моделирования полета камня
- 3.4.1. Постановка задачи моделирования
- 3.4.2. Концептуальная формулировка задачи
- 3.4.3. Построение математической модели
- 3.4.4. Выбор метода решения
- 3.4.5. Программная реализация модели на эвм
- 3.4.6. Проверка адекватности модели
- 3.4.7. Анализ результатов моделирования
- Методические указания
- 10 Главных вопросов
- Глава 4. Практика математического моделирования
- 4.1. Моделирование процессов на основе известных формул
- 4.1.1. Моделирование изменения параметров атмосферы
- 4.1.2. Моделирование закона Мура
- 4.1.3. Моделирование преодоления самолетом звукового барьера
- 4.2. Моделирование на основе конечно-разностных методов
- 4.2.1. Моделирование Броуновского движения частиц
- 4.2.2. Моделирование диффузии
- 4.2.3. Моделирование торможения автомобиля()
- 4.2.4. Моделирование падения парашютиста()
- 4.2.5. Моделирование генератора на туннельном диоде()
- 4.2.6. Моделирование развития и угасания эпидемии
- 4.3. Моделирование колебательных систем
- 4.3.1. Анализ линейной колебательной системы
- 4.3.2. Анализ нелинейной колебательной системы Ван дер Поля
- 4.3.3. Моделирование системы Дафинга с внешним воздействием
- 4.3.4. Хаос и моделирование аттрактора Лоренца()
- 4.4. Моделирование рассеивания альфа-частиц()
- 4.5. Моделирование биологических и экономических систем
- 4.5.1. Модель системы «хищник-жертва» Лотки-Вольтерра
- 4.5.2. Модель системы «хищник-жертва» с логистической поправкой
- 4.5.3. Модель системы «хищник-жертва» Холлинга-Тэннера
- 4.5.4. Моделирование замкнутой экономической системы
- 4.6. Моделирование на основе линейного программирования
- 4.6.1.Оптимальные экономико-математические модели
- 4.6.2. Решение задач максимизации объема продукции
- 4.6.3. Решение задач минимизации ресурсов
- 4.6.4. Решение транспортной задачи
- 4.6.5. Задачи целочисленного программирования с булевыми переменными
- 4.7. Сетевые модели в оптимизации управленческих решений
- 4.7.1. Задача поиска кратчайшего пути
- 4.7.2. Задача о распределении потоков в сетях
- 4.8. Обработка и моделирование сигналов и изображений
- 4.8.1. Основы спектрального метода моделирования сигналов
- 4.8.2. Спектральное моделирование на основе точных формул интегрирования()
- 4.8.3. Улучшенное спектральное моделирование дискретных сигналов()
- 4.8.4. Вейвлеты - новый базис представления сигналов()
- 4.8.5. Вейвлет-преобразования()
- 4.8.6. Примеры вейвлет-обработки сигнала - временного ряда()
- 4.8.7. Анализ сигналов по вейвлет-спектрограммам
- 4.9. Обработка изображений
- 4.9.1. Средства обработки изображений
- 4.9.2. Обработка монохромных изображений
- 4.9.3. Обработка цветных изображений
- 4.9.4. Функции для работы с файлами и матрицами рисунков
- 4.9.5. Вейвлет-компрессия рисунков в пакете Wavelet Extension Pack
- 4.10.1. Подготовка к работе с матричной лабораторией matlab
- 4.10.2. Имитационное моделирование и расширение Simulink
- Методические указания
- 10 Главных вопросов
- Список литературы
- Глава 1. Основы компьютерной математики 4
- Глава 2. Основы математических вычислений 50
- Глава 3. Основы математического моделирования 105
- Глава 4. Практика математического моделирования 121