Оценка обусловленности вычислительной задачи – еще одно обязательное требование при выборе метода решения и построении математической модели.
Пусть вычислительная задача корректна. Теоретически устойчивость задачи означает, что ее решение может быть найдено со сколь угодно малой погрешностью, если только гарантировать достаточно малую погрешность входных данных. Однако на практике их точность ограничена (и величиной гораздо большей, чем м=2-P+1 – машинная точность, p – порядок, округление производится усечением).
Как влияют малые, но конечные погрешности входных данных на решение? Как сильно они искажают результат? Ответ на это дает понятие обусловленности задачи, то есть чувствительность решения вычислительной задачи к малым погрешностям входных данных.
Задачу называют хорошо обусловленной, если малым погрешностям входных данных отвечают малые погрешности решения, и плохо обусловленной, если возможны сильные изменения решения. Часто возможно ввести количественную оценку степени обусловленности – число обусловленности – его можно интерпретировать как коэффициент возможного возрастания погрешности в решении по отношению к вызвавшей их погрешности входных данных: если установлено неравенство между этими погрешностями
абсолютное число обусловленности или
относительное число обусловленности (вместо погрешности могут фигурировать их границы). Для плохо обусловленных задач 1 (неустойчивость =).
При каких значениях можно считать задачу плохо обусловленной? Это зависит от требований к точности решения и от уровня обеспечиваемой точности исходных данных.
Если требуется найти решение с точностью 0.1%, а входная информация задается с точностью в 0.02%, то при =10 уже будет плохая обусловленность.
Однако если исходные данные задаются с (x*) 0.0001%, то при =103 – задача хорошо обусловлена ((y*)=0.1%).
Вычислительные методы преобразуются к виду, удобному для программной реализации. Можно выделить следующие классы численных методов:
Метод эквивалентных преобразований– исходную задачу заменяют другой, имеющей то же решение: нахождение корня нелинейного уравненияf(x)=0 сводят к поиску точек глобального минимумаФ(x)=(f(x))2.
Методы аппроксимации– заменяют исходную задачу другой, решение которой близко к решению исходной задачи.
Методы конечно-разностные, основанные на замене производных конечными разностями, например.
Прямые (точные) методы– решение может быть получено за конечное число элементарных операций (арифметические и извлечение корня). Многие прямые методы не годятся к применению в ЭВМ из-за чувствительности к ошибкам округления.
Итерационные методы– методы последовательных приближений к решению задачи. Задается начальное приближение решения, строится итерационная последовательность приближений к решению. Если эта последовательность сходится к решению, то говорят что итерационный процесс сходится. Множество начальных приближений, для которых метод сходится, называются областью сходимости метода.
Метод статистических испытаний (Монте–Карло)– основан на моделировании случайных величин и построении статистических оценок решений задач (для моделирования больших систем).
Численные методы группируются вокруг типичных математических задач: задач анализа, алгебры, оптимизации, решения дифференциальных и интегральных уравнений, обратных задач (синтез). Этот этап решения заканчивается выбором и обоснованием конкретных численных методов решения, разработкой алгоритма, которые могут быть программно реализованы средствами компьютерной техники.
- Новые информационные технологии
- Часть 3. Основы математики и математическое моделирование Учебное пособие
- Введение
- Глава 1. Основы компьютерной математики
- 1.1. Математика и ее средства
- 1.1.1. Аксиоматический метод и структуры математики
- 1.1.2. Компьютерная математика как часть математики
- 1.1.3. Классификация средств компьютерной математики
- 1.1.4. Структура систем компьютерной математики
- 1.1.5. Обзор систем компьютерной математики
- 1.2. Система компьютерной математикиMathcad
- 1.2.1. Состав системы Mathcad и ее запуск
- 1.2.2. Основы работы с системой Mathcad 2001
- 1.2.3. Работа с текстовым редактором
- 1.2.4. Работа с формульным редактором
- 1.2.5. Операции вывода и присваивания
- 1.2.6. Шаблоны математических операторов и символов
- 1.2.7. Ошибки и прерывание вычислений
- 1.3. Простые типы данных
- 1.3.1. Числовые данные
- 1.3.2. Вещественные числа и их форматы
- 1.3.3. Комплексные числа
- 1.3.4. Строковые данные
- 1.3.5. Символьные данные и выражения
- 1.4. Сложные типы данных
- 1.4.1. Множества и подмножества
- 1.4.2. Массивы
- 1.4.3. Векторы и матрицы
- 1.5. Константы, переменные, операторы и функции
- 1.5.1. Числовые константы
- 1.5.2. Строковые константы
- 1.5.3. Переменные
- 1.5.4. Операторы
- 1.5.5. Выражения и функции
- 1.6. Основы графической визуализации вычислений
- 1.6.1. Понятия об основных геометрических объектах
- 1.6.2. Построение графиков функций одной переменной
- 1.6.3. Построение графиков поверхностей
- 1.7. Средства программирования в системеMathcad
- 1.7.1. Задание операторов пользователя
- 1.7.2. Задание программных модулей
- 1.7.3. Особенности применения программных модулей
- Методические указания
- 2.1.2. Вычисление произведений
- 2.1.3. Вычисление пределов
- 2.3. Вычисление производных и интегралов
- 2.3.1. Определение производной и полного дифференциала
- 2.3.2. Вычисление производных
- 2.3.3. Определение интегралов
- 2.3.4. Вычисление интегралов
- 2.4. Решение уравнений и систем уравнений
- 2.4.1. Простое линейное уравнение и его решение
- 2.4.2. Решение систем линейных уравнений
- 2.4.5. Поиск всех корней степенного многочлена()
- 2.4.6. Решение систем нелинейных уравнений()
- 2.4.7. Реализация итерационных вычислений
- 2.5. Решение дифференциальных уравнений()
- 2.5.1. Основные понятия о дифференциальных уравнениях()
- 2.5.2. Решение систем оду()
- 2.5.3. Решение оду с помощью функции odesolve()
- 2.5.4. Решение жестких систем оду()
- 2.6. Решение задач оптимизации и линейного программирования
- 2.6.1. Основные понятия оптимизации
- 2.6.2. Пример оптимизации раскроя железного листа
- 2.6.3. Поиск минимума тестовой функции Розенброка
- 2.6.4. Функции maximize и minimize системы Mathcad
- 2.7. Разложение функций в ряды
- 2.7.1. Определение рядов Тейлора и Маклорена
- 2.7.2. Разложение в ряд Тейлора в системе Mathcad
- 2.7.3. Ряды Фурье()
- 2.7.4. Быстрые прямое и обратное преобразования Фурье()
- 2.7.5. Примеры преобразований Фурье()
- 2.7.6. Альтернативные преобразования Фурье()
- 2.8. Табличная интерполяция и аппроксимация
- 2.8.1. Теоретические основы интерполяции и экстраполяции
- 2.8.2. Интерполяция и аппроксимация по общей формуле Лагранжа
- 2.8.3. Полиномиальная интерполяция и аппроксимация
- 2.8.4. Кусочно-линейная и сплайновая аппроксимации в Mathcad
- 2.9. Статистическая обработка данных
- 2.9.1.Эксперименты, события и другие понятия статистики
- 2.9.2.Решение задач комбинаторики
- 2.9.3. Дискретные и непрерывные случайные величины
- 2.9.4. Законы распределения и статистические функции Mathcad
- 2.9.5. Регрессия и метод наименьших квадратов
- 2.9.6. Выполнение линейной регрессии в среде Mathcad
- 2.9.7. Полиномиальная регрессия в Mathcad
- 2.9.8. Проведение нелинейной регрессии()
- 2.9.9. Экстраполяция и предсказание
- 2.9.10. Сглаживание данных
- Методические указания
- 10 Главных вопросов
- Глава 3. Основы математического моделирования
- 3.1. Основные понятия моделирования
- 3.2. Основные виды моделей и их свойства
- 3.2.1. Основные виды моделей
- 3.2.2. Основные свойства моделей
- 3.3. Цели, принципы и технология моделирования
- 3.3.1. Цели моделирования
- 3.3.2. Основные принципы моделирования
- 3.3.3. Технология моделирования
- 3.3.4. Основные методы решения задач моделирования
- Оценка обусловленности вычислительной задачи – еще одно обязательное требование при выборе метода решения и построении математической модели.
- 3.3.5. Контроль правильности модели
- 3.4. Задачи моделирования полета камня
- 3.4.1. Постановка задачи моделирования
- 3.4.2. Концептуальная формулировка задачи
- 3.4.3. Построение математической модели
- 3.4.4. Выбор метода решения
- 3.4.5. Программная реализация модели на эвм
- 3.4.6. Проверка адекватности модели
- 3.4.7. Анализ результатов моделирования
- Методические указания
- 10 Главных вопросов
- Глава 4. Практика математического моделирования
- 4.1. Моделирование процессов на основе известных формул
- 4.1.1. Моделирование изменения параметров атмосферы
- 4.1.2. Моделирование закона Мура
- 4.1.3. Моделирование преодоления самолетом звукового барьера
- 4.2. Моделирование на основе конечно-разностных методов
- 4.2.1. Моделирование Броуновского движения частиц
- 4.2.2. Моделирование диффузии
- 4.2.3. Моделирование торможения автомобиля()
- 4.2.4. Моделирование падения парашютиста()
- 4.2.5. Моделирование генератора на туннельном диоде()
- 4.2.6. Моделирование развития и угасания эпидемии
- 4.3. Моделирование колебательных систем
- 4.3.1. Анализ линейной колебательной системы
- 4.3.2. Анализ нелинейной колебательной системы Ван дер Поля
- 4.3.3. Моделирование системы Дафинга с внешним воздействием
- 4.3.4. Хаос и моделирование аттрактора Лоренца()
- 4.4. Моделирование рассеивания альфа-частиц()
- 4.5. Моделирование биологических и экономических систем
- 4.5.1. Модель системы «хищник-жертва» Лотки-Вольтерра
- 4.5.2. Модель системы «хищник-жертва» с логистической поправкой
- 4.5.3. Модель системы «хищник-жертва» Холлинга-Тэннера
- 4.5.4. Моделирование замкнутой экономической системы
- 4.6. Моделирование на основе линейного программирования
- 4.6.1.Оптимальные экономико-математические модели
- 4.6.2. Решение задач максимизации объема продукции
- 4.6.3. Решение задач минимизации ресурсов
- 4.6.4. Решение транспортной задачи
- 4.6.5. Задачи целочисленного программирования с булевыми переменными
- 4.7. Сетевые модели в оптимизации управленческих решений
- 4.7.1. Задача поиска кратчайшего пути
- 4.7.2. Задача о распределении потоков в сетях
- 4.8. Обработка и моделирование сигналов и изображений
- 4.8.1. Основы спектрального метода моделирования сигналов
- 4.8.2. Спектральное моделирование на основе точных формул интегрирования()
- 4.8.3. Улучшенное спектральное моделирование дискретных сигналов()
- 4.8.4. Вейвлеты - новый базис представления сигналов()
- 4.8.5. Вейвлет-преобразования()
- 4.8.6. Примеры вейвлет-обработки сигнала - временного ряда()
- 4.8.7. Анализ сигналов по вейвлет-спектрограммам
- 4.9. Обработка изображений
- 4.9.1. Средства обработки изображений
- 4.9.2. Обработка монохромных изображений
- 4.9.3. Обработка цветных изображений
- 4.9.4. Функции для работы с файлами и матрицами рисунков
- 4.9.5. Вейвлет-компрессия рисунков в пакете Wavelet Extension Pack
- 4.10.1. Подготовка к работе с матричной лабораторией matlab
- 4.10.2. Имитационное моделирование и расширение Simulink
- Методические указания
- 10 Главных вопросов
- Список литературы
- Глава 1. Основы компьютерной математики 4
- Глава 2. Основы математических вычислений 50
- Глава 3. Основы математического моделирования 105
- Глава 4. Практика математического моделирования 121