4.10.2. Имитационное моделирование и расширение Simulink
Система MATLAB сильна не только сама по себе, но и своими многочисленными пакетами расширения, охватывающими многие направления математических вычислений и математического моделирования. Одним из главных расширений является система имитационного блочного динамического моделирования систем - Simulink. В настоящее время используются версии Simulink 4 и 5.
Расширение Simulink является ядром интерактивного программного комплекса, предназначенного для математического моделирования линейных и нелинейных динамических систем и устройств, представленных своей функциональной блок-схемой, именуемой S-моделью (от слов State space - пространство состояния) или просто моделью. При этом возможны различные варианты моделирования: во временной области, в частотной области, с событийным управлением, на основе спектральных преобразований Фурье, с использованием метода Монте-Карло (реакция на воздействия случайного характера) и так далее.
Особенностью Simulink является обширная, открытая для изучения и модификации библиотека компонентов (блоков). Она включает источники сигналов с практически любыми временными зависимостями, масштабирующие, линейные и нелинейные преобразователи с разнообразными формами передаточных характеристик, квантующее устройство, интегрирующие и дифференцирующие блоки и т. д. Окно библиотеки (рис. 4.50) открывается при запуске Simulink из окна системы MATLAB активизацией кнопки на панели инструментов (или из меню).
Рис. 4.50. Окно библиотеки компонентов системыSimulink 5
В библиотеке имеется целый набор виртуальных регистрирующих устройств — от простых измерителей типа вольтметра или амперметра до универсальных осциллографов, позволяющих просматривать временные зависимости выходных параметров моделируемых систем , например, токов и напряжений, перемещений, давлений и т. п. Имеется даже графопостроитель для создания фигур в полярной системе координат, например фигур, Лиссажу и фазовых портретов колебаний. Simulink имеет средства анимации и звукового сопровождения. А в дополнительных библиотеках можно отыскать и такие «дорогие приборы», как анализаторы спектра сложных сигналов, многоканальные самописцы и средства анимации графиков.
Для построения функциональной блок-схемы моделируемых устройств Simulink кромебиблиотеки блочных компонентов имеет удобный редактор блок-схем. Он основан на графическом интерфейсе пользователя и по существу является типичным средством визуально- ориентированного программирования. Используя палитры компонентов (наборы), пользователь с помощью мыши переносит нужные блоки с палитр на рабочий стол пакета Simulink и соединяет линиями входы и выходы блоков. Таким образом, создается блок-схема системы или устройства, то есть модель (см. пример на рис. 4.51).
Рис. 4.51. Моделирование в среде Simulink колебательной системы
Simulink автоматизирует следующий, наиболее трудоемкий этап моделирования: он составляет и решает сложные системы алгебраических и дифференциальных уравнений, описывающих заданную функциональную схему (модель), обеспечивая удобный и наглядный визуальный контроль за поведением созданного пользователем виртуального устройства. Вам достаточно уточнить (если нужно) вид анализа и запустить Simulink в режиме симуляции (откуда и название пакета — Simulink) созданной модели системы или устройства. Мы используем вместо этого термина, имеющего нарицательное значение, термин «моделирование».
Средства визуализации результатов моделирования в пакете Simulink настолько наглядны, что порой создается впечатление, что созданная в виде блок-схемы модель работает «как живая». Более того, Simulink практически мгновенно меняет математическое описание модели по мере ввода ее новых блоков, даже в том случае, когда этот процесс сопровождается сменой порядка системы уравнений и ведет к существенному качественному изменению поведения системы. Приведенный выше пример (рис. 4.51) преследует только учебные цели. Он демонстрирует моделирование уже известной нам модели, которая состоит из нескольких блоков. На деле Simulink может моделировать системы, содержащие сотни блоков и субблоков, например, такие, как система отопления дома, система регулирования химического производства, система автопилота самолета и так далее [10].
- Новые информационные технологии
- Часть 3. Основы математики и математическое моделирование Учебное пособие
- Введение
- Глава 1. Основы компьютерной математики
- 1.1. Математика и ее средства
- 1.1.1. Аксиоматический метод и структуры математики
- 1.1.2. Компьютерная математика как часть математики
- 1.1.3. Классификация средств компьютерной математики
- 1.1.4. Структура систем компьютерной математики
- 1.1.5. Обзор систем компьютерной математики
- 1.2. Система компьютерной математикиMathcad
- 1.2.1. Состав системы Mathcad и ее запуск
- 1.2.2. Основы работы с системой Mathcad 2001
- 1.2.3. Работа с текстовым редактором
- 1.2.4. Работа с формульным редактором
- 1.2.5. Операции вывода и присваивания
- 1.2.6. Шаблоны математических операторов и символов
- 1.2.7. Ошибки и прерывание вычислений
- 1.3. Простые типы данных
- 1.3.1. Числовые данные
- 1.3.2. Вещественные числа и их форматы
- 1.3.3. Комплексные числа
- 1.3.4. Строковые данные
- 1.3.5. Символьные данные и выражения
- 1.4. Сложные типы данных
- 1.4.1. Множества и подмножества
- 1.4.2. Массивы
- 1.4.3. Векторы и матрицы
- 1.5. Константы, переменные, операторы и функции
- 1.5.1. Числовые константы
- 1.5.2. Строковые константы
- 1.5.3. Переменные
- 1.5.4. Операторы
- 1.5.5. Выражения и функции
- 1.6. Основы графической визуализации вычислений
- 1.6.1. Понятия об основных геометрических объектах
- 1.6.2. Построение графиков функций одной переменной
- 1.6.3. Построение графиков поверхностей
- 1.7. Средства программирования в системеMathcad
- 1.7.1. Задание операторов пользователя
- 1.7.2. Задание программных модулей
- 1.7.3. Особенности применения программных модулей
- Методические указания
- 2.1.2. Вычисление произведений
- 2.1.3. Вычисление пределов
- 2.3. Вычисление производных и интегралов
- 2.3.1. Определение производной и полного дифференциала
- 2.3.2. Вычисление производных
- 2.3.3. Определение интегралов
- 2.3.4. Вычисление интегралов
- 2.4. Решение уравнений и систем уравнений
- 2.4.1. Простое линейное уравнение и его решение
- 2.4.2. Решение систем линейных уравнений
- 2.4.5. Поиск всех корней степенного многочлена()
- 2.4.6. Решение систем нелинейных уравнений()
- 2.4.7. Реализация итерационных вычислений
- 2.5. Решение дифференциальных уравнений()
- 2.5.1. Основные понятия о дифференциальных уравнениях()
- 2.5.2. Решение систем оду()
- 2.5.3. Решение оду с помощью функции odesolve()
- 2.5.4. Решение жестких систем оду()
- 2.6. Решение задач оптимизации и линейного программирования
- 2.6.1. Основные понятия оптимизации
- 2.6.2. Пример оптимизации раскроя железного листа
- 2.6.3. Поиск минимума тестовой функции Розенброка
- 2.6.4. Функции maximize и minimize системы Mathcad
- 2.7. Разложение функций в ряды
- 2.7.1. Определение рядов Тейлора и Маклорена
- 2.7.2. Разложение в ряд Тейлора в системе Mathcad
- 2.7.3. Ряды Фурье()
- 2.7.4. Быстрые прямое и обратное преобразования Фурье()
- 2.7.5. Примеры преобразований Фурье()
- 2.7.6. Альтернативные преобразования Фурье()
- 2.8. Табличная интерполяция и аппроксимация
- 2.8.1. Теоретические основы интерполяции и экстраполяции
- 2.8.2. Интерполяция и аппроксимация по общей формуле Лагранжа
- 2.8.3. Полиномиальная интерполяция и аппроксимация
- 2.8.4. Кусочно-линейная и сплайновая аппроксимации в Mathcad
- 2.9. Статистическая обработка данных
- 2.9.1.Эксперименты, события и другие понятия статистики
- 2.9.2.Решение задач комбинаторики
- 2.9.3. Дискретные и непрерывные случайные величины
- 2.9.4. Законы распределения и статистические функции Mathcad
- 2.9.5. Регрессия и метод наименьших квадратов
- 2.9.6. Выполнение линейной регрессии в среде Mathcad
- 2.9.7. Полиномиальная регрессия в Mathcad
- 2.9.8. Проведение нелинейной регрессии()
- 2.9.9. Экстраполяция и предсказание
- 2.9.10. Сглаживание данных
- Методические указания
- 10 Главных вопросов
- Глава 3. Основы математического моделирования
- 3.1. Основные понятия моделирования
- 3.2. Основные виды моделей и их свойства
- 3.2.1. Основные виды моделей
- 3.2.2. Основные свойства моделей
- 3.3. Цели, принципы и технология моделирования
- 3.3.1. Цели моделирования
- 3.3.2. Основные принципы моделирования
- 3.3.3. Технология моделирования
- 3.3.4. Основные методы решения задач моделирования
- Оценка обусловленности вычислительной задачи – еще одно обязательное требование при выборе метода решения и построении математической модели.
- 3.3.5. Контроль правильности модели
- 3.4. Задачи моделирования полета камня
- 3.4.1. Постановка задачи моделирования
- 3.4.2. Концептуальная формулировка задачи
- 3.4.3. Построение математической модели
- 3.4.4. Выбор метода решения
- 3.4.5. Программная реализация модели на эвм
- 3.4.6. Проверка адекватности модели
- 3.4.7. Анализ результатов моделирования
- Методические указания
- 10 Главных вопросов
- Глава 4. Практика математического моделирования
- 4.1. Моделирование процессов на основе известных формул
- 4.1.1. Моделирование изменения параметров атмосферы
- 4.1.2. Моделирование закона Мура
- 4.1.3. Моделирование преодоления самолетом звукового барьера
- 4.2. Моделирование на основе конечно-разностных методов
- 4.2.1. Моделирование Броуновского движения частиц
- 4.2.2. Моделирование диффузии
- 4.2.3. Моделирование торможения автомобиля()
- 4.2.4. Моделирование падения парашютиста()
- 4.2.5. Моделирование генератора на туннельном диоде()
- 4.2.6. Моделирование развития и угасания эпидемии
- 4.3. Моделирование колебательных систем
- 4.3.1. Анализ линейной колебательной системы
- 4.3.2. Анализ нелинейной колебательной системы Ван дер Поля
- 4.3.3. Моделирование системы Дафинга с внешним воздействием
- 4.3.4. Хаос и моделирование аттрактора Лоренца()
- 4.4. Моделирование рассеивания альфа-частиц()
- 4.5. Моделирование биологических и экономических систем
- 4.5.1. Модель системы «хищник-жертва» Лотки-Вольтерра
- 4.5.2. Модель системы «хищник-жертва» с логистической поправкой
- 4.5.3. Модель системы «хищник-жертва» Холлинга-Тэннера
- 4.5.4. Моделирование замкнутой экономической системы
- 4.6. Моделирование на основе линейного программирования
- 4.6.1.Оптимальные экономико-математические модели
- 4.6.2. Решение задач максимизации объема продукции
- 4.6.3. Решение задач минимизации ресурсов
- 4.6.4. Решение транспортной задачи
- 4.6.5. Задачи целочисленного программирования с булевыми переменными
- 4.7. Сетевые модели в оптимизации управленческих решений
- 4.7.1. Задача поиска кратчайшего пути
- 4.7.2. Задача о распределении потоков в сетях
- 4.8. Обработка и моделирование сигналов и изображений
- 4.8.1. Основы спектрального метода моделирования сигналов
- 4.8.2. Спектральное моделирование на основе точных формул интегрирования()
- 4.8.3. Улучшенное спектральное моделирование дискретных сигналов()
- 4.8.4. Вейвлеты - новый базис представления сигналов()
- 4.8.5. Вейвлет-преобразования()
- 4.8.6. Примеры вейвлет-обработки сигнала - временного ряда()
- 4.8.7. Анализ сигналов по вейвлет-спектрограммам
- 4.9. Обработка изображений
- 4.9.1. Средства обработки изображений
- 4.9.2. Обработка монохромных изображений
- 4.9.3. Обработка цветных изображений
- 4.9.4. Функции для работы с файлами и матрицами рисунков
- 4.9.5. Вейвлет-компрессия рисунков в пакете Wavelet Extension Pack
- 4.10.1. Подготовка к работе с матричной лабораторией matlab
- 4.10.2. Имитационное моделирование и расширение Simulink
- Методические указания
- 10 Главных вопросов
- Список литературы
- Глава 1. Основы компьютерной математики 4
- Глава 2. Основы математических вычислений 50
- Глава 3. Основы математического моделирования 105
- Глава 4. Практика математического моделирования 121