logo search

Применение нечеткой логики для подстройки коэффициентов пид-регулятора

Настройка регулятора, выполненная методами, изложенными в разделах "Расчет параметров" и "Автоматическая настройка и адаптация", не является оптимальной и может быть улучшена с помощью дальнейшей подстройки. Подстройка может быть выполнена оператором на основании правил (см. раздел "Ручная настройка, основанная на правилах") или автоматически, с помощью блока нечеткой логики (рис. 5.92). Блок нечеткой логики (фаззи-блок) использует базу правил подстройки и методы нечеткого вывода. Фаззи-подстройка позволяет уменьшить перерегулирование, снизить время установления и повысить робастность ПИД-регулятора [Yesil].

Рис. 5.92. Структура ПИД-регулятора с блоком автонастройки на основе нечеткой логики

Процесс автонастройки регулятора с помощью блока нечеткой логики начинается с поиска начальных приближений коэффициентов регулятора  . Это делается обычно методом Зиглера-Никольса, исходя из периода собственных колебаний в замкнутой системе и петлевого усиления. Далее формулируется критериальная функция, необходимая для поиска оптимальных значений параметров настройки методами оптимизации.

В процессе настройки регулятора используют несколько шагов [Hsuan]. Сначала выбирают диапазоны входных и выходных сигналов блока автонастройки, форму функций принадлежности искомых параметров, правила нечеткого вывода, механизм логического вывода, метод дефаззификации и диапазоны масштабных множителей, необходимых для пересчета четких переменных в нечеткие.

Поиск параметров регулятора выполняется методами оптимизации. Для этого выбирается целевая функция как интеграл от суммы квадратов ошибки регулирования и времени установления. В критерий минимизации иногда добавляют скорость нарастания выходной переменной объекта.

В качестве искомых параметров (параметров, которые надо найти) выбирают положение максимумов функций принадлежности (см.рис. 5.90) и масштабные коэффициенты на входе и выходе фаззи-блока. К задаче оптимизации добавляют ограничения на диапазон изменения позиций функций принадлежности. Оптимизация критериальной функции может быть выполнена, например, с помощью генетических алгоритмов.

Следует отметить, что в случаях, когда информации достаточно для получения точной математической модели объекта, традиционный регулятор всегда будет лучше нечеткого потому, что при синтезе нечеткого регулятора исходные данные заданы приближенно.