Романов В
Практическое применение нейронных сетей для задач классификации (кластеризации)
Решение задачи классификации является одним из важнейших применений нейронных сетей. Задача классификации представляет собой задачу отнесения образца к одному из нескольких попарно непересекающихся множеств. Примером таких задач может быть, например, задача определения кредитоспособности клиента банка, медицинские задачи, в которых необходимо определить, например, исход заболевания, решение задач управления портфелем ценных бумаг (продать, купить или «придержать» акции в зависимости от ситуации на рынке), задача определения жизнеспособных несклонных к банкротству фирм.
Содержание
- Глава 13. Нейронные сети
- 13.1. Архитектура нейронных сетей
- Различные виды искусственных нейронов
- Различные виды функции активации
- Нейронные сети с прямой связью
- 13.2. Алгоритмы обучения нейронных сетей
- Критерии ошибок
- Обратное распространение ошибки
- Импульс
- Другие алгоритмы обучения
- Перекрестное подтверждение
- 13.3. Динамические сети
- Нейронные сети с временной задержкой
- 13.4. Самоорганизующиеся сети
- Практическое применение нейронных сетей для задач классификации (кластеризации)
- Цель классификации
- Использование нейронНblХ сетей в качестве классификатора
- Подготовка исходных данных
- Кодирование выходных значений
- Вероятностная классификация
- Классифика торы образов
- Нейронная сеть с прямой связью как классификатор
- 13.6. Применение нейронных сетей для анализа временных рядов задача анализа временных рядов
- Статистический анализ временных рядов
- Сбор данных
- Нейронные сети как средство добычи данных
- Очистка и преобразование базы данных
- Построение модели
- Программное обеспечение
- Финансовый анализ на рынке ценных бумаг
- Литература