13.4. Самоорганизующиеся сети
Введенную Кохоненом «самоорганизующуюся карту признаков)} можно рассматривать как вариант нейронной сети. Сеть такого типа рассчитана на самостоятельное обучение: во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различныеобразцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже полученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием «близости".
Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько кластеров сеть может распознавать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синоптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутренние связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход.
Выходные элементы соревнуются между собой за право вступить в действие и «получить урок». Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору в смысле расстояния, определяемого, например, евклидовой метрикой. У элемента-победителя это расстояние будет меньше, чем у всех остальных. На текущем шаге обучения менять веса разрешается только элементу-победителю (и, может быть, его непосредственным соседям); веса остальных элементов при этом как бы заморожены. Выигравший элемент заменяет свой весовой вектор, немного перемещая его в сторону входного вектора. После обучения на достаточном количестве примеров совокупность весовых векторов с большей точностью приходит в соответствие со структурой входных примеров - векторы весов в буквальном смысле моделируют распределение входных образцов.
Puc.l3.5. Самоорганизующаяся сеть Кохонена. Изображены только связи, идущие в i-u узел. Окрестность узла показана пунктиром
Очевидно, для правильно го понимания сетью входного распределения нужно, чтобы каждый элемент сети становился победителем одинаковое число раз - весовые векторы должны быть равновероятными.
Перед началом работы сети Кохонена нужно сделать две вещи:
векторы величины должны быть случайно распределены по единичной сфере;
все весовые и входные векторы должны быть нормированы на единицу.
13.5. Сеть со встречным распространением
Сеть со встречным распространением (CPN, Counterpropagation Network) соединяет в себе свойства самоорганизующейся сети Кохонена и концепцию Oustar - сети Гроссберга. В рамках этой архитектуры элементы слоя сети Кохонена не имеет прямо го выхода во внешний мир, а служат входами для выходного слоя, в котором связям адаптивно придаются веса Гроссберга. Эта схема возникла из работ Хехта - Нильсена. CPN-сеть нацелена на постепенное построение искомого отображения входов в выходы на основе примеров действия такого отображения. Сеть хорошо решает задачи, где требуется способность адаптивно строить математическое отражение по его точным значениям в отдельных точках.
Сети данного вида успешно применяются в таких финансовых и экономических приложениях, как рассмотрение заявок на предоставление займов, предсказание трендов цен акций, товаров и курсов обмена валют. Говоря обобщенно, можно ожидать успешного применения СРN-сетей в задачах, где требуется извлекать знания из больших объемов данных.
- Глава 13. Нейронные сети
- 13.1. Архитектура нейронных сетей
- Различные виды искусственных нейронов
- Различные виды функции активации
- Нейронные сети с прямой связью
- 13.2. Алгоритмы обучения нейронных сетей
- Критерии ошибок
- Обратное распространение ошибки
- Импульс
- Другие алгоритмы обучения
- Перекрестное подтверждение
- 13.3. Динамические сети
- Нейронные сети с временной задержкой
- 13.4. Самоорганизующиеся сети
- Практическое применение нейронных сетей для задач классификации (кластеризации)
- Цель классификации
- Использование нейронНblХ сетей в качестве классификатора
- Подготовка исходных данных
- Кодирование выходных значений
- Вероятностная классификация
- Классифика торы образов
- Нейронная сеть с прямой связью как классификатор
- 13.6. Применение нейронных сетей для анализа временных рядов задача анализа временных рядов
- Статистический анализ временных рядов
- Сбор данных
- Нейронные сети как средство добычи данных
- Очистка и преобразование базы данных
- Построение модели
- Программное обеспечение
- Финансовый анализ на рынке ценных бумаг
- Литература