Вероятностная классификация
При статистическом распознавании образов оптимальный классификатор относит образец xJ. к классу С, руководствуясь решающим правилом Байеса. Для двух классов оно выглядит так:
V отнести хК к С\, если р{с.I.I}>р{с21 хК}, V отнести f к С2, если Р{С. I.I}< Р{С2 I хК }.
Смысл правила простой: образец f относится к группе, имеющей наибольшую апостериорную вероятность. Это правило оптимально в том смысле, что оно минимизирует среднее число неправильных классификаций. Ес
ли имеется такая пара функций {<PJ(X)' q>z(x)}, что выполнены условия:
<р\(Х)< <Р2(х), если p{c1Ix} < Р{С2 I х },
<Р2(Х» <Р.(Х), если Р{С\ I х}> Р{С2 I х },
то байесовское соотношение между априорной и апостериорной вероятностью сохраняет силу, и поэтому эти функции можно использовать в качестве упрощенных решающих функций. Так имеет смысл делать, если эти функции строятся и вычисляются более просто.
Хотя правило выглядит очень простым, применить его на практике оказывается трудно, так как бывают неизвестны апостериорные вероятности (или даже значения упрощенных решающих функций). Их значения можно оценить. В силу теоремы Байеса апостериорные вероятности можно выразить через априорные вероятности и функции плотности по формуле Р {С;
Ix} = Р{ С; }Р{х I С; ~ Р{ Cj }Р{х I Cj},
где j - номер класса. Таким образом, правило Байеса для произвольного числа классов принимает вид:
V отнести х к С; ,если Р{х I С; }Р{ С; } >Р{х I Cj }Р{ Cj) для Bcex j::i:i.
- Глава 13. Нейронные сети
- 13.1. Архитектура нейронных сетей
- Различные виды искусственных нейронов
- Различные виды функции активации
- Нейронные сети с прямой связью
- 13.2. Алгоритмы обучения нейронных сетей
- Критерии ошибок
- Обратное распространение ошибки
- Импульс
- Другие алгоритмы обучения
- Перекрестное подтверждение
- 13.3. Динамические сети
- Нейронные сети с временной задержкой
- 13.4. Самоорганизующиеся сети
- Практическое применение нейронных сетей для задач классификации (кластеризации)
- Цель классификации
- Использование нейронНblХ сетей в качестве классификатора
- Подготовка исходных данных
- Кодирование выходных значений
- Вероятностная классификация
- Классифика торы образов
- Нейронная сеть с прямой связью как классификатор
- 13.6. Применение нейронных сетей для анализа временных рядов задача анализа временных рядов
- Статистический анализ временных рядов
- Сбор данных
- Нейронные сети как средство добычи данных
- Очистка и преобразование базы данных
- Построение модели
- Программное обеспечение
- Финансовый анализ на рынке ценных бумаг
- Литература