Другие алгоритмы обучения
Наконец, в последнее время пользуются успехом так называемые генетические алгоритмы, в которых набор весов рассматривается как ИНДИВИД, подверженный мутациям и скрещиванию, а в качестве показателя его «качества» берется критерий ошибки. По мере того как нарождаются новые поколения, все более вероятным становится появление оптимального индивида.
ШУМ
в финансовых приложениях данные зашумлены особенно сильно. Например, совершение сделок может регистрироваться в базе данных с запозданием, причем в разных случаях- с разным. Про пуск значений или неполную информацию также иногда рассматривают как шум: в таких случаях берется среднее или наилучшее значение, и это, конечно, приводит к зашумлению базы данных. Отрицательно сказывается на обучении неправильное определение класса объекта в задачах распознавания - это ухудшает способность системы к обобщению при работе с новыми (т.е. не входившими в число образцов) объектами.
- Глава 13. Нейронные сети
- 13.1. Архитектура нейронных сетей
- Различные виды искусственных нейронов
- Различные виды функции активации
- Нейронные сети с прямой связью
- 13.2. Алгоритмы обучения нейронных сетей
- Критерии ошибок
- Обратное распространение ошибки
- Импульс
- Другие алгоритмы обучения
- Перекрестное подтверждение
- 13.3. Динамические сети
- Нейронные сети с временной задержкой
- 13.4. Самоорганизующиеся сети
- Практическое применение нейронных сетей для задач классификации (кластеризации)
- Цель классификации
- Использование нейронНblХ сетей в качестве классификатора
- Подготовка исходных данных
- Кодирование выходных значений
- Вероятностная классификация
- Классифика торы образов
- Нейронная сеть с прямой связью как классификатор
- 13.6. Применение нейронных сетей для анализа временных рядов задача анализа временных рядов
- Статистический анализ временных рядов
- Сбор данных
- Нейронные сети как средство добычи данных
- Очистка и преобразование базы данных
- Построение модели
- Программное обеспечение
- Финансовый анализ на рынке ценных бумаг
- Литература