Различные виды искусственных нейронов
Искусственным нейроном (рис. 12.1) называется простой элемент, сначала вычисляющий взвешенную сумму V входных величин Xj
N __
у= ∑ Wixi =Wixi
i=l
Здесь N- размерность пространства входных сигналов.
Затем полученная сумма сравнивается с пороговой величиной (или bias)
wo, вслед за чем вступает в действие нелинейная функция активации f (ее можно также охарактеризовать как «решающую функцию»). Коэффициенты {W,} во взвешенной сумме (1) обычно называют синаптическими коэффициентами или весами. Саму же взвешенную сумму V мы будем называть потенциалом нейрона i. Выходной сигнал тогда имеет вид f(v)
Величину порогового барьера можно рассматривать как еще один весовой коэффициент при постоянном входном сигнале. В этом случае мы говорим о расширенном входном пространстве: нейрон с N -мерным входом имеет N+ I весовой коэффициент. Если ввести в уравнение пороговую величину WO, оно перепишется так:
в зависимости от способа преобразования сигнала и характера функции активации возникают различные виды нейронных структур. Мы будем рассматривать только детерминированные нейроны (в противоположность вероятностным нейронам, состояние которых в момент t есть случайная функция потенциала и состояния в момент (t-l). Далее, мы будем различать статические нейроны - такие, в которых сигнал передается без задержки,- и динамические, где учитывается возможность таких задержек, учитывается (<<синапсы с запаздыванием»).
Входы Синапсы Ячейка Аксон Выход
нейрона
у
Рис.13.1.Искусственный нейрон
- Глава 13. Нейронные сети
- 13.1. Архитектура нейронных сетей
- Различные виды искусственных нейронов
- Различные виды функции активации
- Нейронные сети с прямой связью
- 13.2. Алгоритмы обучения нейронных сетей
- Критерии ошибок
- Обратное распространение ошибки
- Импульс
- Другие алгоритмы обучения
- Перекрестное подтверждение
- 13.3. Динамические сети
- Нейронные сети с временной задержкой
- 13.4. Самоорганизующиеся сети
- Практическое применение нейронных сетей для задач классификации (кластеризации)
- Цель классификации
- Использование нейронНblХ сетей в качестве классификатора
- Подготовка исходных данных
- Кодирование выходных значений
- Вероятностная классификация
- Классифика торы образов
- Нейронная сеть с прямой связью как классификатор
- 13.6. Применение нейронных сетей для анализа временных рядов задача анализа временных рядов
- Статистический анализ временных рядов
- Сбор данных
- Нейронные сети как средство добычи данных
- Очистка и преобразование базы данных
- Построение модели
- Программное обеспечение
- Финансовый анализ на рынке ценных бумаг
- Литература