Романов В
Нейронная сеть с прямой связью как классификатор
Поскольку сети с прямой связью являются универсальным средством аппроксимации функций, с их помощью можно оценить апостериорные вероятности в данной задаче классификации. Благодаря гибкости в построении отображения можно добиться такой точности аппроксимации апостериорных вероятностей, что они практически будут совпадать со значениями, вычисленными по правилу Байеса (так называемые оптимальные процедуры классификации).
Содержание
- Глава 13. Нейронные сети
- 13.1. Архитектура нейронных сетей
- Различные виды искусственных нейронов
- Различные виды функции активации
- Нейронные сети с прямой связью
- 13.2. Алгоритмы обучения нейронных сетей
- Критерии ошибок
- Обратное распространение ошибки
- Импульс
- Другие алгоритмы обучения
- Перекрестное подтверждение
- 13.3. Динамические сети
- Нейронные сети с временной задержкой
- 13.4. Самоорганизующиеся сети
- Практическое применение нейронных сетей для задач классификации (кластеризации)
- Цель классификации
- Использование нейронНblХ сетей в качестве классификатора
- Подготовка исходных данных
- Кодирование выходных значений
- Вероятностная классификация
- Классифика торы образов
- Нейронная сеть с прямой связью как классификатор
- 13.6. Применение нейронных сетей для анализа временных рядов задача анализа временных рядов
- Статистический анализ временных рядов
- Сбор данных
- Нейронные сети как средство добычи данных
- Очистка и преобразование базы данных
- Построение модели
- Программное обеспечение
- Финансовый анализ на рынке ценных бумаг
- Литература