Введение
CAN-протокол был разработан фирмой Robert Bosch GmbН для использования в автомобильной электронике, отличается повышенной помехоустойчивостью, надежностью и обладает следующими возможностями:
конфигурационная гибкость,
получение сообщений всеми узлами с синхронизацией по времени,
неразрушающий арбитраж доступа к шине,
режим мультимастер,
обнаружение ошибок и передача сигналов об ошибках,
автоматическая передача сбойных сообщений при получении возможности повторного доступа к шине,
различие между случайными ошибками и постоянными отказами узлов с возможностью выключения дефектных узлов,
работает по витой паре на расстоянии до 1 км.
Естественно, что все эти качества делают CAN-протокол весьма привлекательным для использования в производственных приложениях, тем более что он поддерживается рядом фирм-производителей микросхем, выпускающих недорогие устройства, которые аппаратно реализуют требования CAN-протокола и работают в широком температурном диапазоне.
СAN-протокол распространяется на следующие уровни:
Объектный уровень обеспечивает фильтрацию сообщений и обработку сообщений и состояний.
Транспортный уровень представляет собой ядро CAN-протокола. Он отвечает за синхронизацию, арбитраж, доступ к шине, разделение посылок на фреймы, определение и передачу ошибок и минимизацию неисправностей.
Физический уровень определяет, как именно будут передаваться сигналы,их электрические уровни и скорость передачи.
Физический уровень
Физический уровень определяется стандартом ISO11898 и характеризуется следующими возможностями.
Дифференциальное включение приемопередатчиков обеспечивает подавление синфазной помехи, при этом уровень сигналов составляет 1/3 от значения напряжения питания, причем само напряжение питания не определяется жестко. Например, типичные значения при напряжении питания +5 В приведены на рис. 1, причем доминирующим уровнем является нижний уровень, а рецессивным, соответственно, верхний
Максимальное расстояние между узлами — до 1 км.
Скорость обмена до 1 Мбит/с при длине линии 60 м.
Возможность применения гальванической развязки, причем гальваническая развязка может устанавливаться либо между приемо-передающим буфером и микросхемой, обеспечивающей функции CAN, либо между микросхемой и остальной системой (рис. 2).
- 1. Сравнительный анализ протоколов Fieldbus
- Введение
- Общие требования к системе fieldbus
- Типичные стандарты
- Сравнительное изучение
- Метод передачи
- Введение
- Общие черты и отличительные особенности profibus-pa
- Foundation™ fieldbus
- Управление на базе систем нижнего уровня
- Функциональная совместимость
- Открытость
- Заключение
- Введение
- Типы фреймов в can-протоколе
- Средства управления доступом к шине в can-протоколе
- Адресация в can-протоколе
- Управление ошибками
- Стандартный и расширенный фрейм
- Прерывания в can-протоколе
- Микросхемы, поддерживающие can-протокол
- Применение в индустриальных приложениях
- Заключение
- Вступление
- Cal (can Application Layer)
- CaNopen
- Can Kingdom
- DeviceNet
- Sds (Smart Distributed System)
- Заключение
- Что такое Fieldbus?
- Экскурс в теорию
- Foundation Fieldbus
- Profibus
- Введение
- Основные понятия и определения
- Основная конфигурация системы
- Средства объединения устройств системы
- Методика выбора кабеля
- Влияние среды обмена
- Электромагнитные помехи и симметрия параметров канала связи
- Дополнительные требования к реализации заземления
- Конфликтные ситуации