ТВиМС коллоквиум
12. Непосредственные следствия из аксиом
10. сумма вероятностей всякого события и его дополнения равно 1: .
20. если - пустое множество, то . На самом деле, полагая в 10 А = , получаем, стало быть, .
30. если АА,ВА и ВА, то , в частности, из ВА следует А=В+(А\В), и поэтому
40. если А,В А, то : действительно, , откуда в силу 30, имеем .
50. Если А1,…,Аn из А,
Положили В1=А1, при к2 , тогда
Содержание
- 1.Предмет теории вероятностей – анализ случайных явлений: отсутствие детерминистической регулярности и наличие статистической регулярности
- 2.Теория вероятностей как аксиоматизируемая математическая дисциплина
- 2. Эксперимент (опыт, испытание, явление)и его исход (результат, наблюдение)
- 3. Вспомогательная модель. Реализация этой идеи
- 4. Вероятностная модель
- 5. Вспомогательная и Вероятностная модели экспериментов. Однократное и двукратное подбрасывания монеты
- 7. Общая схема построения конечной вероятностной модели – вероятностного пространства
- 8. Произвели эксперимент, известен исход. Произошло ли событие?
- 9. Практическое значение вероятности события
- 11. Аксиомы а.Н. Колмогорова
- 1. Элементарная теория вероятностей
- 10. Необходимые в теории вероятностей сведения из теории множеств и теории меры
- 3. Основное определение
- 12. Непосредственные следствия из аксиом
- 13. Парадокс де Мере
- 14. Применения комбинаторного анализа в теории вероятности
- 2. Основное комбинаторное правило (частный случай)
- 3. Основное комбинаторное правило (общий случай)
- 15. Постановка комбинаторной задачи
- 16. Выборка с возвращением и без возвращения
- 17. Выборки неупорядоченные и упорядоченные
- 18. Упорядоченные выборки с возвращением
- 19. Упорядоченные выборки без возвращения-размещения
- 20. Перестановки
- 21. Неупорядоченные выборки из n элементов по k без возвращения – сочетания
- 24.Употребление термина «случайный» в теории вероятностей