52. Случайные величины. Непрерывные и дискретные случайные величины. Распределение случайной величины. Интегральная и дифференциальная функции распределения.
СВ- это измеримая функция, заданная на каком-либо вероятностном пространстве.
Примеры случайных величин:
1) число попаданий при трех выстрелах;
2) число вызовов, поступавших на телефонную станцию за сутки;
3) частота попадания при 10 выстрелах.
Во всех трех приведенных примерах случайные величины могут принимать отдельные, изолированные значения, которые можно заранее перечислить.
Такие случайные величины, принимающие только отделенные друг от друга значения, которые можно заранее перечислить, называются прерывными или дискретными случайными величинами.
Существуют случайные величины другого типа, например:
1) абсцисса точки попадания при выстреле;
2) ошибка взвешивания тела на аналитических весах;
3) скорость летательного аппарата в момент выхода на заданную высоту;
4) вес наугад взятого зерна пшеницы.
Возможные значения таких случайных величин не отделены друг от друга; они непрерывно заполняют некоторый промежуток, который иногда имеет резко выраженные границы, а чаще – границы неопределенные, расплывчатые.
Такие случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называются непрерывными случайными величинами. Дискретной называют случайную величину, значения которой изменяются не плавно, а скачками, т.е. могут принимать только некоторые заранее определённые значения. Например, денежный выигрыш в какой-нибудь лотерее, или количество очков при бросании игральной кости, или число появления события при нескольких испытаниях. Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счётным множеством) Для сравнения - непрерывная случайная величина может принимать любые значения из некоторого числового промежутка: например, температура воздуха в определённый день, вес ребёнка в каком-либо возрасте, и т.д.
Yandex.RTB R-A-252273-3- 1. Роль и место информационного обеспечения в деятельности правоохранительных органов.
- 3. Информационное общество. Информационные ресурсы.
- 4. Информация, ее виды и свойства. Единицы измерения информации.
- 5. Информация как объект обработки в информационной системе и информационной технологии…
- 9.. Программное обеспечение эвм. Структура программного обеспечения
- 12 Операционная система ms Windows - основные сведения.
- 13. Операционная система ms Windows - файловая система.
- 14, 15. Понятие алгоритма, способы задания алгоритмов. Свойства, алгоритма решения задачи.
- 16. Обработка текстовой информации на эвм. Программы редакторов текстов…
- 17. 18. Табличные процессоры
- 20. Базы данных. Реляционные базы данных.
- 25. Возможности графических редакторов.
- 28. Аппаратное и программное обеспечение компьютерных сетей.
- 29. Информационно-поисковые системы.
- 31. Работа с основными службами и протоколами сети Internet.
- 33. Роль компьютерных сетей в деятельности правоохранительных органов
- 34. Электронный документооборот фсин России.
- 35. Ведомственная сеть фсин России, особенности и перспективы использования.
- Вопрос 36 Применение системы глонасс для обеспечения задач по конвоированию и специальным перевозкам фсин России.
- 46. Компьютерные преступления.
- 48. Компьютерные вирусы и средства защиты от них.
- 49. Комбинаторика. Соединения, размещения, перестановки, сочетания.
- 50.Теория вероятностей. Опыт, событие, вероятность события. Совместные и несовместные события. Зависимые и независимые события. Юридические события.
- 51. Основные теоремы теории вероятностей. Формула полной вероятности. Формула Байеса.
- 52. Случайные величины. Непрерывные и дискретные случайные величины. Распределение случайной величины. Интегральная и дифференциальная функции распределения.
- 53. Математическое ожидание и дисперсия. Интегральная и дифференциальная функции распределения. Полигон и гистограмма.
- 55. Непрерывные распределения случайных величин. Нормальное распределение.
- 56. Моделирование социально-правовых процессов. Виды и функции моделей. Математическое моделирование.
- 57. Моделирование социально-правовых процессов.
- 38. 58. Понятие и свойства систем. Управление системами.
- 59. Математические основы анализа и прогнозирования. Интерполяция и экстраполяция.
- 60. Системы подготовки и принятия решений. Экспертные системы.