logo
+++_Аналитика_методология_книга

2.7 Аналитические модели

Данный класс моделей обладает высочайшей степенью формализации описаний и применяется там, где закономерности протекания процессов и функционирования системы являются хорошо изученными, а сами процессы могут рассматриваться как детерминированные. Нередко аналитические модели справедливо отождествляются с моделями детерминированных процессов. Такие ограничения являются достаточно жесткими, что ограничивает сферу их применения системами, функционирующими в стационарных условиях (т. е. в малой степени подверженных влиянию случайных возмущающих воздействий) или требуют существенного упрощения модели. В качестве примера аналитической модели может рассматриваться модель невозмущенного движения объекта в космическом пространстве.

Аналитическое математическое моделирование — это вид моделирования, в ходе которого основная роль отводится аналитической математической модели, обладающей следующими особенностями:

Использование ЭВМ при аналитическом моделировании не является обязательным, но решение достаточно сложных задач, сформулированных аналитически, целесообразно сопровождать проведением численных исследований на ЭВМ. Для проведения этих исследований разрабатывается соответствующий алгоритм (алгоритмическая модель), реализующая его программа, формируется массив исходных данных, после чего выполняются расчеты.

Проведению аналитического моделирования может предшествовать построение концептуальной модели с целью установления того, какой именно теоретический аппарат целесообразно использовать для моделирования данной конкретной системы.

Важным достоинством аналитического моделирования является возможность получения на его основе фундаментальных результатов и инвариантных зависимостей, которые могут быть распространены как на различные случаи использования моделируемой системы в тех или иных ситуациях и распространены на случаи рассмотрения других систем данного класса.

Основным же недостатком аналитического моделирования является то, что его применение к сложным системам требует существенной идеализации описания системы. Это связано с разрастанием объемов вычислений даже при несущественном усложнении описаний. Такая идеализация может приводить к неполной адекватности получаемых результатов, к тому, что эти результаты могут использоваться лишь в качестве первого приближения.

Однако, такие результаты могут быть использованы в ходе проведения моделирования с применением имитационных моделей в качестве неких опорных величин, относительно которых осуществляется дальнейшее исследование системы.