2.8 Имитационные модели
Данная разновидность моделей неразрывно связана с идеей машинного эксперимента. Собственно, имитационная модель — это модель комплексная, к которой не предъявляется строгих требований к применению моделей какого-то заданного типа. Идеология многомодельного исследования целиком основывается именно на этом типе моделей.
Имитационная модель — это комплексное логико-математическое представление системы, реализованное в виде программы, предназначенной для решения на ЭВМ, включающее в себя модели различного типа, и рассматривающее аспект функционирования динамической системы во времени. Данный класс моделей применяется при невозможности строгого аналитического решения задачи или проведения натурного эксперимента. Имитационные модели служат для изучения поведения во времени сложной неоднородной динамической системы, относительно структуры которой существуют точные знания или детализированные гипотезы. Для каждого элемента или подсистемы моделируемой системы в памяти ЭВМ формируется блок данных, характеризующих ее текущее и предшествующие состояния, блок логических и вычислительных процедур, описывающих изменения критических параметров во времени, а также производятся вычисления этих параметров на основе заданных значений.
Комплекс подпрограмм или относительно автономных программных агентов функционирует под управлением программы-супервизора, осуществляющей диспетчеризацию вызовов, активизирующей и приостанавливающей на время выполнение тех или иных процедур в соответствии с планом машинного эксперимента, имитируя тем самым поведение системы. В результате машинного эксперимента формируются массивы данных о состоянии различных параметров системы в различные моменты времени с привязкой к системным событиям, имитируемым в ходе эксперимента.
При этом программа-супервизор управляет процессом имитации случайных возмущающих воздействий, от которых зависит функционирование системы в целом и ее элементов и подсистем. Широкое применение здесь находит метод Монте-Карло, ранее упоминавшийся нами.
Имитационная модель — это инструмент исследования, посредством которого могут осуществляться и манипуляции с масштабом времени функционирования модели. Различают имитационные модели, функционирующие как в натуральном, так и в замедленном или ускоренном масштабе времени. Это является крайне важным при анализе поведения систем, для наблюдения которых отсутствует возможность воспользоваться натуральным масштабом времени. К разряду таких систем могут быть отнесены экосистемы, популяции, системы, в которых протекают скоротечные физические процессы и иные.
К числу наиболее памятных для человечества имитационных моделей могут быть отнесена модель глобальной ядерной войны, приведшая к укоренению в обиходе политиков и военных термина «ядерная зима». Эта модель оказала существенное влияние на международную обстановку и на долгое время снизила накал гонки вооружений. Но уроки не идут впрок — все забывается и новые политики безответственно манипулируют терминами «превентивный удар» и иными, столь же абсурдными.
Частным случаем имитационных моделей являются модели ситуационные. Ситуационные модели — это модели, используемые при решении задач с неопределенностью, исходя из совокупности ситуаций. В отличие от других моделей, основанных на заданном графе функционирования системы, для ситуационной модели такой граф неизвестен. Однако существует набор прецедентов ситуаций, обладающих малым прогностическим потенциалом. Под ситуацией будем понимать временное отношение, сложившееся между ее объектами-участниками, либо между состояниями этих объектов.
Соответственно, под ситуационным моделированием будем понимать метод анализа некоторой системы с применением ситуационной модели, с требуемой степенью адекватности отображающую логическую, временную, пространственную структуру процессов, а также характер и структуру информации о состоянии системы и изменении образующих ее элементов.
Для создания ситуационных моделей требуется решить следующие задачи:
создать информационную модель фрагмента реального мира, в которой каждому явлению, процессу или участнику будет соответствовать уникальный информационный аналог;
обеспечить сбор и регистрацию информации об изменениях ситуации во времени, пространстве и пространстве введенных признаков;
оценить прогностический потенциал тех или иных ситуаций (что связано с инерционностью вовлеченных в ситуацию объектов и системы в целом и т. п.).
Поскольку граф, описывающий последовательность переходов, для ситуационных моделей в общем случае не определен, постольку целесообразно рассматривать вариант представления ситуационной модели в виде обобщенной семантической сети (см. определение, данное ранее). Одна из разновидностей семантических сетей — сценарий, как нельзя лучше подходит для этой цели.
В целом структура ситуационной модели определяется субъективными особенностями восприятия и свойственным аналитику способом разложения ситуации на составляющие. Это вызвано тем, что эксперт-аналитик, осуществляющий процедуру синтеза ситуационной модели, формулирует свои собственные критерии, соответствующие пребыванию системы в том или ином состоянии.
- Оглавление
- К читателю
- Введение
- Глава I сущность, структура и задачи аналитики
- 1 Понятие и сущность аналитики
- 2 Структура, задачи и место аналитики в современных интеллектуальных технологиях
- 3 Аналитика как средство добывания знаний
- 4 Понятийный аппарат аналитики
- Глава II. Методология аналитической деятельности
- 1 Основные методологические системы
- 1.1 Философия, логика, семиотика
- 1.2 Естественнонаучные концепции
- 1.3 Кибернетика и системный анализ
- 1.4 Гуманитарные науки
- 1.5 Теоретические основы системного анализа как методологического ядра аналитики
- 2 Методы формализации предметной области и моделирование
- 2.1 Понятие сложной системы
- 2.2 Моделирование как метод познания
- 2.3 Вербальные или понятийные модели
- 2.4 Логико-лингвистические и семиотические модели и представления
- 2.5 Логические модели
- 2.6 Статистические, теоретико-вероятностные модели
- 2.7 Аналитические модели
- 2.8 Имитационные модели
- 3 Аналитика как интерфейс между теорией и практикой
- 3.1 Методы активизации мышления
- 3.2 Методы структурирования информации
- 3.3 Методы обработки и анализа числовых данных
- Глава III принципы организации аналитической деятельности
- 1 Ситуация в россии, проблемы и задачи информационно-аналитического обеспечения
- 2 Задачи и определение иао
- 3 Субъект информационно-аналитической работы
- 3.1 Противоречия в сфере организации иар
- 3.2 Организационные формы субъектов иар
- 3.3 Серединный путь?
- 3.4 Системы, управляемые потоком событий
- 4 Целеполагание в организационных системах
- 4.1 Базовые утверждения и определения
- 4.2 Модель иерархии целей
- 5 Методики социальных технологий а.А. Шияна
- 5.1 Теоретические основы социальных технологий
- 5.2 Человек (эксперт-аналитик) как двухкомпонентный абстрактный информационный автомат
- 6 Требования к организации информационно-аналитического обеспечения управленческой деятельности
- 7. Разработка организационной структуры аналитического подразделения
- Глава IV аналитические технологии
- 1 Противоречия в сфере развития средств автоматизации и информатизации иар
- 2 Технологический цикл иар
- 3 Первичная обработка имеющихся данных и анализ модельной информации
- 4 Поиск, отбор и экспресс-анализ данных
- 5 Работа с источниками текстовой информации
- 5.1 Неструктурированные текстовые данные
- 5.2 Структурированные текстовые данные
- 5.3 Взаимные преобразования различных типов данных
- 5.4 Анализ информативности источников
- 5.5 Проблема активной фильтрации сообщений
- 6 Аналитический режим потребления информации
- 6.1 Акт коммуникации и ошибки интерпретации
- 6.2 Управление элементами модели мира
- 6.3 Режимы восприятия информации
- 7 Атрибуция сообщений
- 8 Выявление неполноты, противоречивости и недостоверности информации
- 8.1 Логико-лингвистические средства анализа достоверности
- 8.2 Нетекстовые модели как инструмент верификации данных
- 9 Средства автоматизации иар
- 9.1 Средства сбора информации
- 9.2 Средства хранения данных
- 9.3 Экспертные системы
- 9.4 Системы искусственного интеллекта и интеллектуального анализа данных
- 9.5 Средства структурирования и визуализации данных. Электронные помощники аналитика
- 9.6 Системы гибридного интеллекта
- 9.7 Средства снижения размерности массива измерений
- 9.8 Инструментальные средства представления и доведения результатов иар
- Глава V аналитика как взвешенный подход к разработке и оцениванию управленческих решений
- 1 Проблема принятия решений
- 2 Разработка и анализ управленческих решений
- 2.1 Образование, карьера и лицо, принимающее решение
- 2.2 Концептуализация проблемы
- 2.3 Оценивание эффективности
- 2.4 Технологии прогнозирования
- 3 Методика выявления неформальных управляющих структур (центров сил) в регионах россии
- 3.1 Проблемы и противоречия в регионах россии как следствие борьбы центров сил
- 3.2 Введение в концептуальную систему
- 3.3 Методики проведения исследований
- 3.4 Экспертная система социально-экономического мониторинга, основанная на концепции центров сил
- 3.5 Показатели и алгоритмы выявления центров сил
- Заключение
- Список литературы
- Вариант организации процесса перспективного планирования на примере плана usaf-2025
- Примеры применения методик социальных технологий
- Пример аналитического разбора сообщения
- Глоссарий
- Список используемых сокращений