logo
+++_Аналитика_методология_книга

2.4 Логико-лингвистические и семиотические модели и представления

Как было отмечено, логико-лингвистические и семиотические модели представляют собой следующий — более высокий уровень моделей. Характерно, что и для этого класса моделей существует несколько почти синонимических наименований:

Данный тип моделей характеризуется более высокой степенью формализации. Формализация затрагивает преимущественно логический аспект существования/функционирования моделируемой системы. При построении логико-лингвистических моделей широко используется символьный язык логики и формализм теории графов и алгоритмов. Логические отношения между отдельными элементами модели могут отображаться с применением выразительных средств различных логических систем (краткая характеристика которых была приведена ранее в этой книге). При этом строгость логических отношений может варьироваться в широких пределах от отношений строгого детерминизма до отношений вероятностной логики. Существует возможность построения логико-лингвистических моделей в базисе нескольких формально-логических систем, отражающих различные аспекты функционирования системы и знаний о ней.

Наиболее распространенным способом формального представления логико-лингвистических моделей является граф. Граф — это формальная система, предназначенная для выражения отношений между элементами произвольной природы, оперирующая модельными объектами двух типов: вершина (точка), символизирующая элемент, и ребро (дуга, связь), символизирующее отношение между связываемыми им элементами. В математической интерпретации граф представляет собой формальную систему, описываемую, как G=(Х,U), где Х — множество вершин, U — множество ребер (дуг). Граф состоит из упорядоченных пар вершин, причем одна и та же пара может входить в множество U любое число раз, описывая различные виды отношений. Классический пример графа приведен на рис. 2.4.

Рисунок 2.4 — Пример графа переходов.

Различают несколько видов графов, среди которых, если представить классификацию графов в виде иерархии, наиболее крупными классами (второй сверху слой модельных объектов в пирамиде) являются ориентированные, неориентированные и смешанные графы. В зависимости от того является отношение, отображаемое на графе линией, обратимым или необратимым для именования линии могут использоваться термины «ребро» (неориентированная, обратимая связь — отображается обычной линией) или «дуга» (ориентированная, необратимая связь — отображается стрелкой).

В качестве примера графа также можно использовать привычные нам иерархические классификации в виде прямоугольников, связанных линиями, схемы метрополитена, технологические карты и т. п. документы.

Для логико-лингвистических моделей в роли вершин графа выступают атомарные (примитивные) или сложные утверждения на естественном языке или символы, их заменяющие. Связи могут маркироваться различным образом, с тем, чтобы наиболее полным образом охарактеризовать тип связи (отношения). В частности, дуги могут отображать и наличие функциональных зависимостей, операционных связей (входная ситуация — операция — выходная ситуация) — в этих случаях дуги маркируются специальным образом.

В зависимости от характера отображаемых с помощью графа отношений, граф может развертываться с привязкой к некоторой шкале (например — шкале времени) — шкале, отображающей введенную в рамках данной модели метрику. Метрика — это некоторое правило, на основании которого в рамках некоторой модели могут осуществляться операции сравнения объектов, их состояний, определения расстояния между точками в некотором пространстве признаков. Кроме того, метрикой часто называют, собственно, параметр, значение которого определяется в соответствии с введенным правилом.

Одним из видов логико-лингвистических моделей являются сценарии или сценарные модели. Сценарные модели (сценарии) — это разновидность логико-лингвистических моделей, предназначенных для отображения развернутых во времени последовательностей взаимосвязанных состояний, операций или процессов. Сценарии могут иметь как линейную, так и ветвящуюся структуру, в которой могут быть установлены условия перехода к той или иной частной стратегии, либо просто отображены возможные альтернативы без указания условий. Требование взаимосвязанности применительно к сценарным моделям не является строгим и носит довольно условный характер, поскольку устанавливается на основе субъективных суждений экспертов, а также определяется спецификой формулировки целей деятельности. Так, если вам, читатель, вздумается включить в некую сценарную модель, отражающую динамику событий, последовавших за террористическими актами 11 сентября 2002 года, только США и Афганистан — это ваше право, но если вам вздумается включить в число игроков все нефтедобывающие страны, то и тут вас никто не может ни осудить, ни отговорить. Сценарии, как разновидность логико-лингвистических моделей, широко распространены в отраслях деятельности, связанных с моделированием социально-политической, экономической и военной обстановки, созданием информационных систем поддержки управленческой деятельности и во многих других.

Следует отметить, что в ряде случаев трудно провести грань между сценарной моделью и алгоритмом. Однако между сценарной моделью и алгоритмом существует достаточно существенное различие, а заключено оно в том, что алгоритм — это совокупность инструкций, выполнение которых должно привести к некоторому результату, в то время как сценарная модель — это не обязательно алгоритм, например, она может представлять собой протокол событий, повторение которых в той же последовательности не обязательно приведет к той же ситуации, что и в предыдущий раз. То есть, понятие сценарной модели — это более широкое понятие, нежели понятие алгоритма. Понятие алгоритма связано с операционным подходом к моделированию, а алгоритмический подход к анализу причинно-следственных отношений имеет много общего с детерминизмом (правда, многими алгоритмами предусматриваются процедуры обработки различных исключительных ситуаций — вплоть до отказа от принятия решения). Сценарная модель налагает менее строгие ограничения на характер причинно-следственных отношений.

Еще одной важной разновидностью логико-лингвистических моделей являются логико-смысловые (семантические) модели69. Логико-смысловые (семантические) модели — это разновидность логико-лингвистических моделей, ориентированная на отображение исследуемого явления (проблемы), разрабатываемого решения или проектируемого объекта посредством некоторого множества выраженных на естественном языке понятий, фиксирующая отношения между понятиями и отображающая содержательно-смысловые связи между понятиями. Характерно, что используя тот же аппарат, эта разновидность логико-лингвистических моделей ориентирована на несколько иной вид деятельности — а именно, на поиск решения, его синтез из ранее имевших место прецедентов, существующих описаний предметной области или описаний путей решения группы близких по содержанию проблем.

По существу этот метод моделирования представляет собой метод поиска решения некоторого комплекса задач на основе анализа совокупности формализованных знаний о некоторой сложной системе. Условно применение данного метода можно описать как циклически повторяемую последовательность из двух процедур: процедуры построения системы высказываний, отражающих знания о системе, и процедуры анализа полученной совокупности знаний с применением ЭВМ (правда, на определенных этапах реализации метода требуется участие эксперта).

Знания о системе представляются в виде семантической сети, отражающей совокупность элементов информации о системе и связей, отражающих смысловую близость этих элементов. Метод логико-смыслового моделирования был разработан в нашей стране в первой половине 1970-х годов в качестве инструмента для подготовки, анализа и совершенствования комплексных решений, принимаемых на различных уровнях отраслевого и межотраслевого управления на основе смыслового (семантического) анализа информации. Выделяется следующие два направления применения логико-смыслового моделирования:

Элементами логико-смысловой модели являются высказывания на естественном языке (когнитивные элементы) и связи, существующие между явлениями и объектами, которые отражают эти высказывания. Из совокупности когнитивных элементов и связей получается сеть, описывающая проблемную область.

Семантическая сеть — это разновидность модели, отображающая множество понятий и связей между ними, обусловленных свойствами моделируемого фрагмента реального мира. В общем случае семантическая сеть может быть представлена в виде гиперграфа, в котором вершины соответствуют понятиям, а дуги — отношениям. Такая форма представления обеспечивает большую простоту реализации отношений типа «многие ко многим», нежели иерархическая модель. В зависимости от типов связей, различают классифицирующие, функциональные сети и сценарии. В классифицирующих семантических сетях используются отношения структуризации, в функциональных — функциональные (вычислимые) отношения, а в сценариях — причинно-следственные (каузальные) отношения. Разновидностью семантической сети является фреймовая модель, реализующая «матрешечный» принцип раскрытия свойств систем, процессов и т. п.

Логико-смысловые модели позволяют формировать тематически связные описания различных аспектов проблемы (равно, как и проблемы в целом) и проводить структурный анализ проблемной области. Тематически связные описания получаются за счет выделения из общей совокупности когнитивных элементов логико-смысловой сети некоторых тех, которые непосредственно относятся к заданной тематике. В качестве частного примера применения логико-смыслового моделирования можно рассматривать гипертекстовые системы, получившие широкое распространение в глобальной телекоммуникационной сети Интернет.

В качестве когнитивных элементов могут выступать не только знания, но и высказывания иного характера, например описания отдельных задач. В этом случае логико-смысловые модели могут использоваться для решения проблемы выявления и анализа взаимосвязанных комплексов задач, их декомпозиции и агрегирования, для построения деревьев целей и задач.

Логико-смысловая модель представляется в виде связного неориентированного графа, в котором вершины соответствуют высказываниям, а ребра — семантическим связям между ними. Характеристики графа используются для исследования логико-смысловой сети. Применение такого способа представления позволяет ввести метрики семантической близости когнитивных элементов, и оценки их значимости. Так, например, количество связей, замыкающихся на одном элементе (валентность вершины), рассматривается как выражение значимости элемента, а длина пути от элемента до элемента, измеренная в узлах сети, как семантическая близость элементов (значимость относительно некоторого элемента).

Логико-смысловое моделирование позволяет выявить на основе анализа текстов, сформулированных различными экспертами, скрытые зависимости между различными аспектами проблемы, на взаимосвязь которых не указывалось ни в одном из предложенных текстов, а также произвести объективное ранжирование проблем и задач по их важности. Анализ графа позволяет обнаружить неполноту модели, локализовать те ее места, которые нуждаются в пополнении системы связей и элементов. Это становится возможным благодаря построению взаимосвязанной системы высказываний о предметной области объекта и автоматизированного выделения и структурирования высказываний, характеризующихся семантической близостью.

Благодаря применению средств накопления логико-смысловых моделей в активное использование могут быть вовлечены знания, полученные при решении сходных задач в смежных отраслях деятельности, то есть, реализован принцип историчности при принятии решений. Это приводит к постепенному снижению трудоемкости процессов синтеза новых логико-смысловых моделей.

Методы логико-лингвистического моделирования не исчерпываются перечисленными здесь. Следует упомянуть методы логико-лингвистического моделирования ситуаций, основанные на анализе потока сообщений, разрабатываемые одним из авторов этой книги, П.Ю. Конотоповым, рассмотрению которых будет уделено внимание далее, методы логико-лингвистического моделирования деловых процессов, методы синтеза деревьев целей и задач, а также иные методы, основанные на применении логико-лингвистических моделей и методов. Широкое применение логико-лингвистические модели нашли в отрасли разработки программного обеспечения, управления корпоративными информационными ресурсами и многих других отраслях, где требуется определенный уровень формализации, представляющий единство строгости, интуитивной понятности и высокой выразительной способности моделей.