1.3. Связь напряженности электрического поля и потенциала
Предположим, что нам известен потенциал электрического поля во всех точках пространства. Как найти напряженность поля в некоторой точке?
Выберем в пространстве, где существует электрическое поле, декартову прямоугольную систему координат. Перенесем некоторый пробный заряд q вдоль оси x на малое расстояние . Тогда работа электрического поля по перемещению зарядаq из одной точки в другую
,
где и () – начальная и конечная координаты заряда, а– изменение потенциала заряда.
С другой стороны по определению элементарная работа силы (на небольшом участке траектории) есть скалярное произведение векторов и приращения радиус-вектора :
,
где проекции вектора силы на соответствующие оси прямоугольной системы координат.
Так как заряд перемещается вдоль оси , то его координатыине меняются:. Следовательно, получаем:
.
Приравнивая правые части полученных для величины выражений:, для проекции вектора напряженности на осьx получим:
, (1.9)
т.е. проекция вектора напряженности электрического поля на ось x равна производной потенциала по направлению оси x, или, другими словами, равна градиенту потенциала в этом направлении.
Аналогично, смещая заряд вдоль оси или вдоль оси, можно найти величины проекцийи:
, (1.9,а)
. (1.9,б)
Итак, все три компоненты вектора напряженности электрического поля известны:
. (1.9,в)
Вектор, стоящий справа в последнем уравнении, называется градиентом скалярной функции и обозначается. Таким образом
, (1.10)
т.е. две характеристики электрического поля – напряженность и потенциал связаны друг с другом. Зная потенциал в каждой точке пространства, где существует электрическое поле, можно определить вектор напряженностив каждой точке этого пространства, и наоборот.
- Оглавление
- Введение
- 1. Электростатика
- 1.1. Закон Кулона
- 1.2. Электрическое поле и его характеристики
- 1.3. Связь напряженности электрического поля и потенциала
- 1.4. Электрическое поле точечного заряда. Принцип суперпозиции
- 1.5. Графическое изображение электрических полей. Силовые линии и эквипотенциальные поверхности
- 1.6. Теорема Гаусса для электрического поля в вакууме
- 1.7. Проводники в электрическом поле
- 1.8. Электрическое поле в диэлектриках
- 1.9. Теорема Гаусса для электрического поля в диэлектриках
- 1.10. Конденсаторы
- 1.11. Энергия электрического поля
- 1.12. Потенциальность электрического поля. Теорема о циркуляции
- 2. Постоянный электрический ток
- 2.1. Закон Ома для однородного участка цепи
- 2.2. Работа и мощность электрического тока. Закон Джоуля - Ленца
- 2.3. Последовательное и параллельное соединение проводников
- 2.4. Источники тока. Закон Ома для полной цепи
- 2.5. Химические источники тока. Элемент Вольта
- 2.6. Закон Ома для неоднородного участка цепи
- 2.7. Правила Кирхгофа
- Для лучшего уяснения всех нюансов, возникающих при применении правил Кирхгофа, рассмотрим пример достаточно разветвленной цепи.
- 2.8. Закон Ома в дифференциальной форме. Электронная теория проводимости
- 3. Магнетизм
- 3.1. Магнитное поле. Сила Лоренца
- 3.2. Движение заряженных частиц в электрических и магнитных полях
- 3.3. Сила Ампера
- 3.4. Рамка с током в магнитном поле
- 3.5. Эффект Холла
- 3.6. Вычисление магнитной индукции. Закон Био-Савара-Лапласа
- 3.7. Циркуляция и поток вектора магнитной индукции
- 3.8. Работа по перемещению контура с током в магнитном поле. Работа электродвигателя
- 3.9. Индуктивность
- 3.10. Закон электромагнитной индукции
- 3.11. Правило Ленца
- 3.12. Явления при замыкании и размыкании тока. Энергия магнитного поля
- 3.13. Генераторы и электродвигатели
- 3.14. Трансформаторы
- 3.15. Природа электромагнитной индукции
- 3.16. Магнитное поле в веществе
- 3.17. Теорема о циркуляции магнитного поля в веществе. Напряженность магнитного поля
- 3.18. Молекулярная теория магнетизма
- 3.19. Ток смещения. Уравнения Максвелла
- 3.20. Природа магнетизма
- 4. Электромагнитные колебания и волны
- 4.1. Колебательный контур
- 4.2. Колебательный контур с затуханием
- 4.3. Вынужденные колебания в lcr-контуре
- 4.4. Переменный ток в электрических цепях
- 4.4.1. Активное, индуктивное и емкостное сопротивления
- 4.4.2. Закон Ома для переменного тока. Активное и реактивное сопротивления
- 4.4.3. Метод векторных диаграмм
- 4.4.4. Эффективные напряжение и ток
- 4.4.5. Мощность в цепи переменного тока
- 4.5. Электромагнитные волны
- 4.5.1. Шкала электромагнитных волн
- 4.5.2. Получение электромагнитных волн
- 4.5.3. Энергия электромагнитных волн. Вектор Умова-Пойнтинга
- Список литературы