2.1. Операции на множествах
Частным случаем функции является операция, т.е. функциональное отображение вида : MnМ, где знак отображения. Такая функция называется n-арной операцией, в ней области определения аргументов и область значений функции совпадают, n-местная операция по n элементам множества определяет (n+1)-й элемент этого же множества [9-10].
Алгеброй А называется совокупность <> множества М с заданными на нем операциями S={11,12,...1n1,21,...2n2,m1,m2,...mnm}, А=<М,S>, где множество М – носитель, S – сигнатура алгебры [9-10, 19]. Каждый первый индекс у идентификатора операции указывает ее местность.
Алгебра типа <М,2>, т.е. алгебра с бинарной операцией, называется группоидом.
Рассмотрим квадрат с вершинами в точках а1, а2, а3, а4, пронумерованных против часовой стрелки, и повороты квадрата вокруг центра также против часовой стрелки, переводящие вершины в другие вершины [19]. Таких поворотов бесконечное множество: на углы 0, ,, 3, 2, 5, ..., однако они задают всего четыре различных отображения множества вершин в себя, соответствующих первым четырем поворотам.
Можно сказать, что задана алгебра А=<М,1> с основным множеством М={а1,а2,а3,а4} и четырьмя унарными операциями ММ, которые обозначим буквами , , , . Зададим эти операции таблицей (табл. 1).
Таблица 1
Унарные операции алгебры поворотов квадрата
-
а1
а1
а2
а3
а4
а2
а2
а3
а4
а1
а3
а3
а4
а1
а2
а4
а4
а1
а2
а3
0
3
Можно интерпретировать такие операции также циклическими сдвигами бит информации вида:
.
Множество 0={,,,} отображений вершин в себя вместе с бинарной операцией 020 последовательного выполнения отображений (выполнения поворота за поворотом, композиции поворотов), которую обозначим символом «¤» образует алгебру с бинарной операцией <0, ¤> [19]. Она задается табл. 2, в которой на пересечении строки i и столбца j записан результат операции ioj.
Таблица 2
Бинарные операции 020 алгебры
композиций поворотов квадрата
-
i
j
i¤j
Такая таблица (см. табл. 2), задающая бинарную операцию, называется таблицей Кэли.
Можно представить бинарной операцией, например, смешивание красок, когда из двух цветов получается третий, входящий, однако во множество всех цветов.
Пусть А=<М,2> – группоид. Обозначим, как и в предыдущем примере, 2 символом ¤ [9].
Тогда элемент nМ называется правым нейтральным элементом группоида А, если для всякого mМ выполняется равенство m¤n=m.
Для левого нейтрального элемента выполняется равенство n¤m=m.
В дальнейшем для краткости вместо слов «все», «всякий» будем использовать символ (перевернутая буква А – первая буква английского слова All – все, этот символ называется еще квантором общности; квантор существования обозначается и означает «существует», «имеется», «есть»).
Элемент n, являющийся одновременно и левым, и правым нейтральным элементом, называют двухсторонним нейтральным элементом или просто нейтральным элементом.
Для смешивания красок нейтральный элемент – бесцветный лак.
Если группоид <М, ¤> мультипликативный, т.е. его бинарная операция ¤ имеет тип умножения (·), то нейтральный элемент называется единицей и обозначается 1, если группоид аддитивный, т.е. бинарная операция ¤ имеет тип сложения (+), то нейтральный элемент называется нулем и обозначается 0 [9]. Нейтральный элемент в группоиде всегда единственный.
Коммутативный группоид, т.е. группоид, в котором
(х,yМ)(х¤y=y¤х),
называется коммутативным или абелевым.
Группоид, в котором выполняется закон ассоциативности
(х,y,zМ)(х¤ (y¤z)=(x¤y) ¤z),
называется ассоциативным или полугруппой.
Полугруппа с единицей называется моноидом. В алгебре поворотов квадрата (см. табл. 2) единицей служит поворот на нулевой угол ().
Группой называется полугруппа с единицей, в которой для каждого элемента а существует элемент а-1, называемый обратным (а¤а-1=а-1¤а=n) и каждое из уравнений a¤x=b, y¤a=b обладает единственным решением [9].
В алгебре поворотов квадрата (см. табл. 2), являющейся группой, обратным к данному повороту является поворот, дополняющий его до 2:
-1=, -1=, -1=.
Группа, все элементы которой являются степенями одного элемента а, называется циклической. Циклическая группа всегда абелева.
Множество рациональных чисел, не содержащее нуля, с операцией умножения является абелевой группой. Обратным к элементу а, является элемент .
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации