8.1. Цель минимизации переключательных функций
При технической реализации переключательных функций, широко используемых в вычислительной технике, системах автоматического (автоматизированного) управления и контроля, возникает задача нахождения наиболее экономичного представления соответствующих переключательных функций. По существу решается задача оптимизации, причем минимизируется стоимость реализации. Понятие стоимости устройства, реализующего переключательную функцию – дискретного устройства – относительно. Для переключательных схем, реализуемых в виде релейно-контактных схем, для схем из корпусных транзисторов и резисторов, из микросхем логических элементов малой степени интеграции, минимизация числа реле, контактов, транзисторов, числа микросхем и означает снижение стоимости [28]. Это было особенно актуально на ранних этапах развития дискретной, цифровой техники. Для современных цифровых автоматов на больших и сверхбольших интегральных схемах (БИС и СБИС) стоимость определяется площадью схемы на кристалле кремния и непосредственно не связана с числом микротранзисторов и других элементов. Нередко схема с большим числом элементов, но обладающая высокой регулярностью, занимает небольшую площадь, кроме того, она выгодна с точки зрения проектирования, ведь стоимость проектирования, как и стоимость изготовления, входит в суммарную стоимость устройства [28].
При построении устройства из дискретных компонентов в целях повышения надежности наряду с уменьшением их числа (что увеличивает вероятность безотказной работы) большое значение придается уменьшению числа соединений между компонентами (это также увеличивает вероятность безотказной работы). Кстати, эта задача решается на соответствующем графе – он разбивается на подграфы, минимально связанные между собой. Однако, для БИС надежность соединений внутри кристалла достаточно высока по сравнению с надежностью соединений между кристаллами. В связи с этим большое значение приобретает деление системы на БИС таким образом, чтобы уменьшить число точек соединений между ними.
Ограничимся в дальнейшем целью нахождения наиболее простого представления переключательной функции в смысле наименьшего числа входящих в нее символов (букв). Процесс получения такого представления будем называть минимизацией. Под различными символами (буквами) будем понимать вхождения одной и той же переменной в различные дизъюнктивные (конъюнктивные) члены функции. Так, функция z1(аbс)=аb aс bс содержит шесть букв, а функция z2(аbс)=аb aс – четыре буквы, хотя обе функции зависят от трех переменных а,b,с (закон обобщенного склеивания z1=z2).
Методы минимизации разрабатываются применительно к каждой отдельной функциональной полной системе элементных переключательных функций. Наиболее детально такие методы разработаны для систем из дизъюнкции, конъюнкции и инверсии.
При этом задача минимизации переключательной функции сводится к нахождению такой ее формы, которая содержит наименьшее число дизъюнкций, конъюнкций и инверсий.
Нахождение минимального представления функции в виде ДНФ или КНФ связано с решением двух основных задач [17]. Во-первых, это определение конъюнкций (дизъюнкций) входящих в ДНФ (КНФ), каждая из которых содержит минимальное число букв. Во-вторых, это определение ДНФ (КНФ), содержащей минимальное число различных элементарных конъюнкций (дизъюнкций).
Будем рассматривать в основном минимизацию переключательных функций в классе ДНФ, не требуя минимизации числа инверсий.
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации