8.2. Основные понятия и определения, используемые при минимизации
При минимизации переключательных функций существенную роль играют понятия импликанты, простой импликанты, имплиценты и простой имплиценты [14]. Пусть f(x), g(x), p(x) – полностью определенные функции, причем под х понимается некоторый набор из n переменных (х1х2...хn). Функция f(х) определена на рабочих (единичных) наборах М1[f(х)] и множестве запрещенных (нулевых) наборов М0[f(х)]. Функция g(x) определена на множестве рабочих (единичных) наборов М1[g(x)], а функция р(х) – на множестве запрещенных (нулевых) наборов М0[р(х)].
Переключательная функция g(х) называется импликантой переключательной функции f(х), если множество рабочих (единичных) наборов функции g(х) совпадает или является подмножеством множества рабочих наборов функции f(х), т.е. М1[g(x)] М1[f(x)], где – знак включения в множество, означающий, что всякий элемент левого множества является элементом правого множества. При этом говорят, что М1[f(x)] содержит М1[g(x)], т.е. в соответствии с определением импликации g(x)f(x).
Переключательная функция р(х) является имплицентой переключательной функции f(х), если множество запрещенных (нулевых) наборов функции р(х) совпадает или является подмножеством множества запрещенных (нулевых) наборов функции f(х), т.е. М0[р(x)] М0[f(x)].
Пусть функция в СДНФ имеет вид:
f(x1x2x3)=x1 x2 x3 x1 x2x3 x1x2x3;
g1(x)=x1 x2 x3 (конституента СДНФ);
g2(x)= х1 х2x3 (конституента СДНФ);
g3(x)= х1 х2 х3 (конституента СДНФ);
g4(x)= f(х), т.е. сама функция в СДНФ.
Из СДНФ можно получить другие импликанты путем всевозможных группировок ее членов и многократного использования (по возможности) закона склеивания, пока не останется конъюнкций, отличающихся значениями одной переменной (в одной,в другой, если остальные члены конъюнкции одинаковы).
Так:
Группировка первой и второй конституенты не позволяет применить закон склеивания:
Других вариантов комбинаций и склеиваний для f(х) нет.
Простой импликантой функции f(х) называется любая элементарная конъюнкция в g(х), являющаяся импликантой функции и обладающая тем свойством, что никакая ее собственная часть уже не является импликантой. В примере импликанты g5=х1х2, g6=х2х3 являются простыми импликантами функции f. Импликанты g1, g2, g3, g7 и, естественно, g4 – не являются простыми, т.к. их части являются импликантами функции f: например, g5 является частью g2 (g3). Говорят, что простые импликанты покрывают или поглощают соответствующие конституенты.
В булевой алгебре переключательных функций утверждается и доказывается: 1) дизъюнкция любого числа импликант переключательной функции также является импликантой этой функции; 2) любая переключательная функция равносильна дизъюнкции всех своих простых импликант, и такая форма ее представления называется сокращенной ДНФ (СкДНФ). Рассмотренный перебор всех возможных импликант переключательной функции f дает возможность убедиться, что простых импликант всего две: g5, g6. Тогда сокращенная ДНФ функции f имеет вид:
f=g5g6=х1х2х2х3.
Рабочими наборами функции f(х1х2х3) являются 011, 110, 111 (табл. 34). Из таблицы видно, что импликанты g5, g6 в совокупности покрывают своими единицами все единицы функции f, т.е. рабочие наборы сокращенной ДНФ = 110, 111, 011, 111, последний повторяется дважды. Получение сокращенной ДНФ – первый этап минимизации.
Иногда из сокращенной ДНФ можно убрать одну или несколько простых импликант, не нарушая количества необходимых рабочих наборов. Такие простые импликанты назовем лишними. В нашем случае их нет. Исключение лишних простых импликант из сокращенной ДНФ – второй этап минимизации.
Таблица 34
Таблица истинности импликант
|
|
|
| Импликанты | ||||||
х1 | х2 | х3 | f | g1 | g2 | g3 | g4=f | g5 | g6 | g7 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
Сокращенная ДНФ переключательной функции называется тупиковой, если в ней отсутствуют лишние простые импликанты.
Устранение лишних простых импликант из сокращенной ДНФ переключательной функции не является однозначным процессом, т.е. переключательная функция может иметь несколько тупиковых ДНФ.
Тупиковые ДНФ, содержащие минимальное число букв, являются минимальными.
Минимальных ДНФ тоже может быть несколько. Минимальная ДНФ функции, найденная путем построения и перебора всех тупиковых ДНФ и выбора из них самой минимальной, называется общей (абсолютной) тупиковой ДНФ.
Поиск минимальной ДНФ всегда связан с перебором решений. Существуют методы уменьшения перебора, но он всегда имеется. Как правило, ограничиваются нахождением одной или нескольких тупиковых ДНФ, из которых выбирают минимальную, – её называют частной минимальной ДНФ и считают близкой к общей (абсолютной).
При минимизации не полностью определенных переключательных функций особенностью является то, что необходимо найти такое ее доопределение за счет условных наборов, которое соответствует минимальной ДНФ, содержащей наименьшее число букв.
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации