3.4. Перестановки
Рассмотрим различные упорядочения n элементного множества Х (вектора длины n, составленные из n элементного множества). В отличие от декартова произведения, полученные при этом векторы, отличаются лишь порядком следования элементов и называются перестановками без повторений из n элементов. Число перестановок без повторений из n элементов обозначается Pn. К перестановкам без повторений можно прийти, полагая, что осуществляется размещение без повторений из n элементов по n:
Считается, что 0!=1.
Пример. Сколько существует возможных последовательностей выполнения проверок финансовой деятельности трех подразделений?
Требуется получить число перестановок без повторений из трех элементов, т.е. Р3=3!=6.
Получим все эти последовательности:
(1,2,3), (1,3,2), (2,3,1), (2,1,3), (3,1,2), (3,2,1).
Пример. Сколько можно составить пятизначных шифров-чисел, не кратных 5, из цифр 1,2,3,4,5 без повторений цифр?
Всего из пяти цифр можно составить Р5=5!=120 пятизначных шифров-чисел, но они будут включать и кратные 5. Сколько будет шифров кратных 5? Из данного набора чисел кратными 5 могут быть числа, содержащие 5 в младшем разряде. Если цифру 5 записать в младшем разряде, то остальные цифры 1,2,3,4 можно распределить по разрядам Р4=4!=24 способами. Таким образом, число пятизначных шифров из чисел 1,2,3,4,5 без повторения чисел и не кратных 5 будет 120-24=96.
Перестановки без повторений можно интерпретировать как различные варианты векторов, состоящих из неповторяющихся компонентов, получаемые перестановкой компонентов.
По аналогии при наличии одинаковых компонент в некотором векторе получаем задачу оценки так называемых перестановок с повторениями данного состава [23].
Рассмотрим вначале пример: сколько различных последовательностей – кодов можно получить, переставляя цифры в числе 010, т.е. векторов длины k=3 из 2-х элементного множества В={0,1}, содержащих два нуля.
Имеется всего три разряда, которые обозначим р1, р2, р3. Их можно переставить р3=3!=6 способами. Запишем различные получаемые сочетания разрядов и соответствующие коды:
Видно, что коды повторяются тогда, когда несущественен порядок следования разрядов с одинаковой цифрой 0 (р1,р3). Все это соответствует тому факту, что имеется два способа (2!) перестановки этих разрядов (р1,р3), (р3,р1) без изменения кода, т.е. неповторяющихся кодов будет меньше во столько раз, сколько имеется способов перестановки повторяющихся разрядов.
Рассмотрим более сложный случай.
Сколько различных «слов», не обязательно имеющих смысл, можно получить, переставляя буквы в слове «кишмиш»?
Здесь шесть букв слова можно переставить друг с другом р6=6!=720 способами, но в данном слове буквы «и» и «ш» повторяются дважды и при их перестановке слова могут повторяться. Сколько же существует вариантов перестановок этих букв без изменения слова? Первый вариант – исходный, второй – поменять местами буквы «и», третий – поменять местами буквы «ш», четвертый – поменять местами как буквы «и», так и буквы «ш». Всего четыре варианта. С учетом того, что эти четыре варианта участвуют в порождении 720 способов, получим 720/4=180 различных «слов». Можно показать, что число раз, во сколько уменьшается количество слов по сравнению с числом перестановок без повторений, представляет собой произведение факториалов количества повторяющихся букв.
Таким образом, если из n элементов множества Х={x1,x2,...,xn} составлен вектор V длины k, причем каждому i-му компоненту можно поставить в соответствие число ki, указывающее его число повторений в V, то задан вектор S=(k1,k2,...,kn), который называется составом данного вектора.
Так, для Х={0,1,2,3} и V=(010223), состав: S=(2,1,2,1).
Векторы одного и того же состава, отличающиеся лишь порядком компонент, называются перестановками с повторениями данного состава.
Общая формула числа перестановок с повторениями данного состава имеет вид
Р(k1,k2,...,kn)=.
Пример. Сколько различных кодовых последовательностей можно получить перестановками кода 102202030?
Такому вектору, составленному из элементов множеств {0,1,2,3} соответствует вектор состава (1,4,3,1), поэтому число различных кодовых комбинаций определяется как число перестановок с повторениями этого состава
Р(1,4,3,1)=.
- Содержание
- 6. Элементарные двоичные переключательные функции
- 7. Основные законы булевой алгебры и преобразование
- Приложение 2. Варианты контрольных заданий по дисциплине
- Предисловие
- Дискретная математика
- 1. Множества и алгебраические системы. Булевы алгебры
- 1.1. Основные понятия теории множеств
- 1.2. Основные операции над множествами
- 1.3. Декартово произведение множеств
- 1.4. Соответствия и функции
- 1.5. Отношения
- 1.6. Использование множеств в языке Паскаль
- 2. Элементы общей алгебры
- 2.1. Операции на множествах
- 2.2. Группа подстановок Галуа
- 2.3. Алгебра множеств (алгебра Кантора)
- 2.4. Алгебраические системы. Решетки
- 2.5. Задание множеств конституентами
- 2.6. Решение уравнений в алгебре множеств.
- 3. Элементы комбинаторики
- 3.1. Комбинаторные вычисления
- 3.2. Основные понятия комбинаторики
- 3.3. Размещения
- 3.4. Перестановки
- 3.5. Сочетания
- 3.6. Треугольник Паскаля.
- 3.7. Бином Ньютона
- 3.8. Решение комбинаторных уравнений
- 4. Основные понятия теории графов
- 4.1. Способы задания графов
- 4.2. Характеристики графов
- 4.3. Понятие о задачах на графах
- 4.4. Задача о Ханойской башне
- 5. Переключательные функции и способы их задания
- 5.1. Понятие о переключательных функциях
- 5.2. Двоичные переключательные функции и способы их задания
- 5.3. Основные бинарные логические операции
- 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
- 5.5. Использование логических операций в теории графов
- 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
- 6.1. Элементарные переключательные функции одной переменной
- 6.2. Элементарные переключательные (логические) функции двух переменных
- 6.3. Функциональная полнота систем переключательных функций
- 6.4. Базисы представления переключательных функций
- 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
- 7. Основные законы булевой алгебры и преобразование переключательных функций
- 7.1. Основные законы булевой алгебры переключательных функций
- 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
- 7.3. Преобразование форм представления переключательных функций
- 8. Минимизация переключательных функций
- 8.1. Цель минимизации переключательных функций
- 8.2. Основные понятия и определения, используемые при минимизации
- 8.3. Аналитические методы минимизации переключательных функций
- 8.4. Минимизация переключательных функций по картам Карно
- 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
- Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
- 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
- 8.7. Минимизация систем переключательных функций
- 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
- 9. Понятие об автомате и его математическом описании
- 9.1. Основные определения теории конечных автоматов
- 9.2. Описание конечных детерминированных автоматов
- 9.3. Понятие о технической интерпретации конечных автоматов
- 9.4. Синтез комбинационных автоматов в заданном базисе
- 9.5. Булева производная
- 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
- 9.7. Синтез автомата – распознавателя последовательности
- 10. Элементы теории кодирования
- 10.1. Понятие о кодировании
- 10.2. Системы счисления, как основа различных кодов
- 10.3. Понятие о помехоустойчивом кодировании
- 10.4. Кодирование по Хэммингу
- 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
- 10.6. Понятие о криптографической защите информации
- 10.7. Понятие о сжатии информации